Toward Open-World Domain Adaptation via Iteratively Contrastive Learning and Clustering

域适应 聚类分析 适应(眼睛) 计算机科学 领域(数学分析) 人工智能 心理学 数学 神经科学 分类器(UML) 数学分析
作者
Jingzheng Li,Hailong Sun,Jiyi Li,Pengpeng Chen,Shikui Wei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 18408-18421
标识
DOI:10.1109/tnnls.2025.3584072
摘要

The open-set domain adaptation (DA) aims to address both covariate shift and category shift between a labeled source domain and an unlabeled target domain. Nevertheless, existing open-set DA methods always ignore the demand for discovering novel classes that are not present in the source domain and simply reject them as "unknown" sets without further exploration, which motivates us to understand the unknown sets more specifically. In this article, we present a more challenging open-world DA problem that recognizes seen classes while discovering novel classes in the target domain. To address this problem, we propose a novel framework that converts this problem into a clustering task via contrastive learning to learn pairwise relationships among the instances. More specifically, our method consists of two iterative steps. The semi-supervised clustering step clusters the unlabeled target data and separates it into seen and novel classes. In the contrastive learning step, based on the cluster assignments, we design tailored contrastive losses that learn pairwise relationships to reduce domain discrepancy and discover novel classes. Our method can be optimized as an example of expectation maximization (EM). We establish several baselines by extending related work. Our method obtains the superior performance on five public datasets, benchmarking this challenging setting for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
谨慎的向南完成签到,获得积分10
刚刚
muchuan完成签到,获得积分10
1秒前
lico完成签到,获得积分10
1秒前
1秒前
甜晞完成签到,获得积分10
2秒前
aojoo完成签到,获得积分10
2秒前
Bethune发布了新的文献求助10
2秒前
虚拟的鞋垫完成签到,获得积分10
3秒前
fcycukvujblk完成签到,获得积分10
3秒前
ban完成签到,获得积分10
3秒前
原来发布了新的文献求助30
3秒前
wangxiaolei完成签到,获得积分10
3秒前
3秒前
大维C完成签到,获得积分10
3秒前
ohh完成签到,获得积分10
4秒前
PATTOM完成签到,获得积分10
4秒前
5秒前
JamesPei应助小琳采纳,获得10
5秒前
student完成签到,获得积分10
5秒前
老实天真发布了新的文献求助10
5秒前
爆米花应助念65采纳,获得10
5秒前
欠虐宝宝发布了新的文献求助10
6秒前
Dreamhappy发布了新的文献求助10
7秒前
慕青应助JRong采纳,获得10
7秒前
7秒前
英姑应助Polaris采纳,获得10
7秒前
张玉完成签到,获得积分10
8秒前
8秒前
fudanlihan完成签到,获得积分10
8秒前
塘泥J完成签到,获得积分10
9秒前
搜集达人应助岱岱采纳,获得10
9秒前
9秒前
焦一丹完成签到 ,获得积分10
10秒前
情怀应助gjm采纳,获得10
10秒前
冰块发布了新的文献求助10
11秒前
英勇的飞扬完成签到,获得积分10
11秒前
Liuruijia完成签到 ,获得积分10
11秒前
谢幼枫发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257090
求助须知:如何正确求助?哪些是违规求助? 4419217
关于积分的说明 13755371
捐赠科研通 4292424
什么是DOI,文献DOI怎么找? 2355507
邀请新用户注册赠送积分活动 1351924
关于科研通互助平台的介绍 1312697