Effective RNA Delivery with Aggregation-Induced Lipid Backfolding

纳米技术 核糖核酸 化学 材料科学 生物物理学 生物化学 生物 基因
作者
Guan Wang,Mengtong Wu,Juanjuan Ye,Yazhou Xu,Yuxiao Chen,Caoyun Ju,Xiao Xu,Can Zhang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (32): 29416-29429
标识
DOI:10.1021/acsnano.5c07140
摘要

Lipid nanoparticles (LNPs) currently serve as a leading platform for RNA delivery. In this field, endosomal escape of LNPs is a key challenge for efficient RNA therapies. Most current strategies focus on designing ionizable lipids to enhance interactions with endosomal membranes, promoting membrane fusion and RNA release. However, existing methods still rely heavily on time-consuming high-throughput screening, and no effective guidelines for rationally designing ionizable lipid structures have been established. In this study, we propose a lipid structure-based strategy for guiding the LNP formulation. We recommend using lipids with asymmetric hydrocarbon tails, exemplified by L-Ada, which consists of a long oleate chain and a short adamantane group. Through extensive all-atom molecular dynamics simulations, we demonstrate that these asymmetric molecules act as membrane-disrupting agents by inducing lipid back-folding, generating packing defects on the membrane surface that facilitate membrane fusion. To counterbalance the reduced membrane rigidity from significant asymmetry, we propose a formulation combining symmetric and asymmetric-tailed lipids. Our results show that the backfolding effect induced by adamantane aggregation can be effectively controlled by the lipid structure and composition. The optimized formulation, consisting of 20% L-Ada and 80% symmetric lipid L-Ste, achieves a favorable balance between packing defects and membrane rigidity, which is also validated by membrane fusion experiments. A simplified thermodynamic model is further proposed to explain these effects and provides specific guidelines for the design of those lipids. In summary, this study presents LNPs incorporating asymmetrically tailed lipids, demonstrating enhanced membrane fusion capabilities and providing a crucial foundation for the optimization of future LNP formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
苏可爱完成签到,获得积分10
3秒前
3秒前
SciGPT应助勇敢牛牛采纳,获得10
5秒前
cici完成签到 ,获得积分10
8秒前
zcy完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
踏实谷蓝完成签到 ,获得积分10
8秒前
14秒前
赵云江完成签到,获得积分10
15秒前
Aikesi完成签到,获得积分10
17秒前
小杭杭弟发布了新的文献求助10
19秒前
snow完成签到 ,获得积分10
20秒前
专注南烟完成签到,获得积分20
21秒前
21秒前
阳光沛菡完成签到 ,获得积分10
21秒前
菜小芽完成签到 ,获得积分10
24秒前
烟花应助文静的人雄采纳,获得10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
Elan发布了新的文献求助10
26秒前
丽娘完成签到 ,获得积分10
26秒前
hsyyk完成签到,获得积分10
27秒前
小杭杭弟完成签到,获得积分10
28秒前
28秒前
时间海完成签到,获得积分10
29秒前
chenzihao完成签到,获得积分10
30秒前
明理的天抒完成签到 ,获得积分10
31秒前
陈皮软糖发布了新的文献求助10
32秒前
Elan完成签到,获得积分10
34秒前
36秒前
科研通AI6应助蓓蓓0303采纳,获得10
38秒前
38秒前
38秒前
39秒前
明白放弃发布了新的文献求助10
40秒前
赵yy应助yueLu采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534769
关于积分的说明 14146667
捐赠科研通 4451409
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433330
关于科研通互助平台的介绍 1410587