Inferring cell-type-specific gene regulatory network from cellular transcriptomics data with GeneLink+

可解释性 计算机科学 推论 基因调控网络 计算生物学 人工智能 机器学习 数据挖掘 生物 基因 基因表达 遗传学
作者
Wei Zhang,Bowen Shao,Wenrui Li,Wenbo Guo,Jiaxin Lyu,Chen Guang-Yi,Chuanyuan Wang,Zhi‐Ping Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (4) 被引量:1
标识
DOI:10.1093/bib/bbaf359
摘要

Abstract Deciphering cell-type-specific gene regulatory networks (ctGRNs) is crucial for elucidating fundamental biological processes, such as tissue development and cancer progression. However, accurately inferring ctGRNs from high-dimensional transcriptomic data poses a significant challenge, primarily due to issues like data sparsity, cell heterogeneity, and over-smoothing (i.e. the tendency of node features to become indistinguishable after many graph convolution layers) in deep learning models. To tackle these obstacles, we present GeneLink+, an innovative framework for ctGRN inference leveraging directed graph link prediction (i.e. inferring causal regulator-target edges) tasks. Building upon the robust predictive capabilities of its primary version, GENELink, GeneLink+ incorporates residual-GATv2 blocks, which synergize dynamic attention mechanisms with residual connections. This architecture effectively mitigates information loss during the aggregation process and preserves cell-type-specific gene features, thereby enhancing the identification of regulatory mechanisms as well as the model’s interpretability. Furthermore, GeneLink+ uses a modified dot product scheme with learnable weight parameters to adaptively prioritize informative gene pairs when scoring regulatory relationships, thus enabling more precise causal edge attribution. Comprehensive benchmarking across seven datasets demonstrated that GeneLink+ either outperforms or matches the performance of existing state-of-the-art methods in terms of predictive accuracy and biological relevance. Additionally, applications to a wide array of transcriptomic data, encompassing single-cell ribonucleic acid sequencing, small nuclear ribonucleic acid sequencing, and spatially resolved transcriptomics, have unveiled pivotal causal regulatory relationships in blood immune cells, Alzheimer’s disease, and breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助不周采纳,获得10
1秒前
1秒前
兴奋的白凝完成签到,获得积分10
1秒前
adasdad完成签到 ,获得积分10
1秒前
华杰发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
丰富丹秋发布了新的文献求助10
2秒前
aaaaa完成签到,获得积分10
2秒前
3秒前
3秒前
Tmac发布了新的文献求助10
3秒前
CipherSage应助小黄鸭采纳,获得10
3秒前
4秒前
Orange应助ZZZ采纳,获得10
4秒前
pluto应助幽默尔蓝采纳,获得10
4秒前
猪猪空发布了新的文献求助10
4秒前
5秒前
5秒前
王静静完成签到,获得积分10
5秒前
baibai完成签到,获得积分10
5秒前
开心小兔子完成签到 ,获得积分10
5秒前
无限冰旋完成签到,获得积分10
6秒前
6秒前
秀丽的冰萍完成签到,获得积分10
6秒前
嘿嘿发布了新的文献求助30
7秒前
Tuniverse_完成签到 ,获得积分10
7秒前
7秒前
MQueen发布了新的文献求助30
8秒前
专注的问寒应助Anne采纳,获得20
8秒前
英俊的铭应助邢契采纳,获得10
9秒前
青山发布了新的文献求助10
9秒前
cfzy完成签到,获得积分10
9秒前
WANGYUANLE完成签到,获得积分10
9秒前
刘佳宇发布了新的文献求助10
9秒前
田様应助小陈采纳,获得10
9秒前
莎普爱思完成签到,获得积分10
10秒前
颜琀樱发布了新的文献求助10
10秒前
Redemption发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389