Optimization and Benchmarking of Image Segmentation for Improved Landmark Detection in Lower Limb X-Rays and Accurate Coronal Plane Alignment of the Knee Classification

地标 冠状面 标杆管理 人工智能 计算机视觉 分割 计算机科学 图像分割 平面(几何) 解剖学标志 模式识别(心理学) 解剖 医学 数学 几何学 业务 营销
作者
Sebastián Amador Sánchez,Ashkan Zarghami,Philippe Van Overschelde,Jef Vandemeulebroucke
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 92350-92364
标识
DOI:10.1109/access.2025.3572342
摘要

Recent studies have explored image segmentation for landmark detection in computer vision and medical imaging of the lower limb, showing promising results. However, the proposed methodologies vary significantly, and a comparison with existing methods is lacking. In the present study, we investigated image segmentation for landmark detection on full lower-limb X-rays in detail and benchmark it against conventional landmark detection approaches. We detected eight landmarks in full lower limb X-rays and investigated methodological aspects to optimize image segmentation performance: network architecture (U-Net vs. Swin-UNETR), mask size centered at the landmark position to segment, and coordinate computation technique from the segmentation map. We contrasted image segmentation against optimized heatmap, coordinate, and segmentation-guided coordinate regression methods. The evaluation assessed the landmark detection error and phenotype classification accuracy based on lower limb alignment. The optimal segmentation approach employed a U-Net to segment circular masks (radius = 15 pixels), using probability thresholding before the centroid computation. Regarding landmark detection accuracy, image segmentation (median Euclidean distance (interquartile range) = 1.16 mm (1.50 mm)) was more accurate than heatmap (1.19 mm (1.61 mm)), coordinate (3.11 mm (2.87 mm)), and segmentation-guided coordinate regression (1.47 mm (1.67 mm)). Image segmentation outperformed heatmap, coordinate, and segmentation-guided coordinate regression in phenotype classification accuracy, achieving an average F1-score of 0.79, versus 0.72, 0.47, and 0.77, respectively. Our study led to an optimized approach for landmark detection using image segmentation, outperforming alternative detection approaches tuned and tested on the same data, highlighting image segmentation’s potential for broader medical imaging research applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷紫易完成签到 ,获得积分10
刚刚
嘟嘟嘟发布了新的文献求助10
刚刚
1秒前
瑁mao完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
Cmiudz完成签到,获得积分10
4秒前
Amosummer发布了新的文献求助30
5秒前
5秒前
Su完成签到,获得积分10
5秒前
楠枫应助生物质炭采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
我是老大应助pingyy采纳,获得10
7秒前
7秒前
taro完成签到,获得积分20
7秒前
7秒前
英俊的铭应助文艺明杰采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
biozhao完成签到,获得积分10
9秒前
9秒前
研友_8Y26PL发布了新的文献求助10
10秒前
taro发布了新的文献求助10
10秒前
加油少年发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601337
求助须知:如何正确求助?哪些是违规求助? 4686845
关于积分的说明 14846441
捐赠科研通 4680565
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506182
关于科研通互助平台的介绍 1471283