氧气
海水
析氧
吸附
机制(生物学)
对偶(语法数字)
材料科学
化学工程
格子(音乐)
路径(计算)
化学物理
化学
无机化学
物理
海洋学
电化学
物理化学
地质学
计算机科学
工程类
艺术
文学类
有机化学
电极
量子力学
声学
程序设计语言
作者
Faming Gao,Xiwen Tao,Li Hou,Xinyi Wang,Jing Jin,Hebin Li
出处
期刊:Research Square - Research Square
日期:2025-04-14
标识
DOI:10.21203/rs.3.rs-6367775/v1
摘要
Abstract Conjointly activating metal and lattice oxygen sites to trigger the adsorbate evolution and lattice oxygen mechanisms coupled path holds promise for balancing activity and stability in oxygen evolution reaction (OER) catalysts, yet confronting significant challenges. Herein, we develop Fe species and oxygen vacancies co-regulated Ni-(oxy)hydroxide (OV-Ni(Fe)OOH), derived from deep reconstruction of Fe-Ni2P/NiMoO4 pre-catalyst during OER, which realizes the AEM-LOM dual-path mechanism with optimal metal-oxygen covalent bonds, as confirmed via in-situ mass/spectroscopy spectrometry and chemical probes. Experimental details and theoretical calculation analysis reveals the enhanced AEM kinetics on the Ni site via the co-regulation of Fe species and OV, featuring upshifted Ni 3d band centers, while the Fe incorporation activates the O site with preferable adsorption free energy for LOM intermediates. Benefiting from the AEM-LOM dual-path mechanism, the activated Fe-Ni2P/NiMoO4 catalyst affords an ampere-scale current density of 1.0 A cm− 2 at low overpotentials of 275 and 299 mV in 1 M KOH and 1 M KOH + seawater, respectively, and maintains seawater electrocatalysis for 480 h in the anion exchange membrane water electrolysis (AEMWE) cell. This work demonstrates a strategy to trigger the dual-path OER mechanism for efficient and stable electrocatalytic water splitting under harsh conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI