Online Stochastic Optimization with Wasserstein-Based Nonstationarity

随机优化 计算机科学 数学优化 数学 计量经济学
作者
Jiashuo Jiang,Xiaocheng Li,Jiawei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2020.03850
摘要

We consider a general online stochastic optimization problem with multiple resource constraints over a horizon of finite time periods. In each time period, a reward function and multiple cost functions are revealed, and the decision maker needs to specify an action from a convex and compact action set to collect the reward and consume the resources. Each cost function corresponds to the consumption of one resource. The reward function and the cost functions of each time period are drawn from an unknown distribution, which is nonstationary across time. The objective of the decision maker is to maximize the cumulative reward subject to the resource constraints. This formulation captures a wide range of applications including online linear programming and network revenue management, among others. In this paper, we consider two settings: (i) a data-driven setting where the true distribution is unknown but a prior estimate (possibly inaccurate) is available and (ii) an uninformative setting where the true distribution is completely unknown. We propose a unified Wasserstein distance–based measure to quantify the inaccuracy of the prior estimate in setting (i) and the nonstationarity of the environment in setting (ii). We show that the proposed measure leads to a necessary and sufficient condition for the attainability of a sublinear regret in both settings. For setting (i), we propose an informative gradient descent algorithm. The algorithm takes a primal-dual perspective, and it integrates the prior information of the underlying distributions into an online gradient descent procedure in the dual space. The algorithm also naturally extends to the uninformative setting (ii). Under both settings, we show the corresponding algorithm achieves a regret of optimal order. We illustrate the algorithm’s performance through numerical experiments. This paper was accepted by Chung Piaw Teo, optimization. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2020.03850 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
善学以致用应助acdc采纳,获得10
刚刚
1秒前
周周应助麻辣potato采纳,获得10
1秒前
凌云完成签到,获得积分10
2秒前
沈华炜完成签到,获得积分10
2秒前
东晓完成签到,获得积分10
2秒前
康康米其林完成签到,获得积分10
2秒前
淡淡的夜山完成签到,获得积分10
3秒前
小羊闲庭信步完成签到,获得积分10
3秒前
傻傻的哈密瓜完成签到,获得积分10
4秒前
Frank完成签到,获得积分10
4秒前
问下他发布了新的文献求助10
5秒前
拼搏惜金完成签到,获得积分10
5秒前
阳光男孩完成签到,获得积分10
5秒前
飞在夏夜的猫完成签到,获得积分10
5秒前
woodaptx完成签到,获得积分10
5秒前
guowu完成签到,获得积分10
6秒前
帅气凝云完成签到 ,获得积分10
6秒前
领导范儿应助火星上初翠采纳,获得10
6秒前
lalala完成签到,获得积分10
7秒前
白小白发布了新的文献求助10
7秒前
忧伤的觅珍完成签到,获得积分10
7秒前
葵小葵完成签到,获得积分10
7秒前
7秒前
文献查找完成签到,获得积分10
8秒前
ljlcyx完成签到,获得积分10
9秒前
哈哈哈哈哈完成签到,获得积分10
10秒前
伶俐谷秋完成签到,获得积分10
10秒前
温柔的墙完成签到,获得积分10
12秒前
fawr完成签到 ,获得积分10
12秒前
火华发布了新的文献求助10
12秒前
13秒前
芋圆完成签到,获得积分10
13秒前
YXJ完成签到,获得积分10
13秒前
衢夭完成签到,获得积分10
14秒前
QYR完成签到,获得积分10
14秒前
啵叽一口完成签到 ,获得积分10
14秒前
小马甲应助周雪峰采纳,获得10
14秒前
南风完成签到,获得积分10
15秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526