CMOS-compatible high-performance silicon photodetector by femtosecond-laser hyperdoping and nanosecond-laser annealing

材料科学 飞秒 光学 光电探测器 纳秒 激光器 光电子学 CMOS芯片 退火(玻璃) 物理 复合材料
作者
Guanting Song,Xu Zhou,Jiaxin Cao,Jinze Cao,Ziyang Zheng,Haonan Jiang,Yaru Yang,Qiang Wu,Jingjun Xu
出处
期刊:Optics Express [The Optical Society]
卷期号:33 (6): 13933-13933 被引量:1
标识
DOI:10.1364/oe.557119
摘要

Femtosecond-laser hyperdoped silicon has emerged as a promising material for the preparation of photodetectors, because of its ultraviolet–near-infrared response spectrum that transcends the bandgap limitations of monocrystalline silicon, along with superior spectral responsivity at low bias and an exceptionally high dynamic range. However, the dependence on thermal annealing post-processing limits the consistency of femtosecond-laser hyperdoping with the trends toward low thermal budget and miniaturization in semiconductor fabrication. Developing high-performance hyperdoped silicon photodetectors compatible with complementary metal-oxide-semiconductor (CMOS) processes and other silicon-based device technologies has consistently been a considerable challenge. This work employed femtosecond-laser hyperdoping followed by nanosecond-laser annealing to fabricate sulfur-hyperdoped silicon. The resulting materials exhibit high-quality single-crystallinity and stable ultraviolet–near-infrared high-absorptance properties. The corresponding hyperdoped silicon photodetector demonstrates a peak responsivity of 117.62 A/W and a specific detectivity of 1.04 × 10 14 Jones at 900 nm which are the highest values reported for laser-annealed silicon-based photodetectors. This preparation process eliminates the reliance on thermal annealing for hyperdoping and addresses the compatibility issues between hyperdoping techniques and CMOS technologies. It provides a promising solution for high-performance ultraviolet–near-infrared CMOS devices, opening up what we believe to be new possibilities for advancing complex and miniaturized device designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助moon采纳,获得10
刚刚
1秒前
Akim应助destiny采纳,获得10
1秒前
满集完成签到 ,获得积分10
3秒前
YukiXu发布了新的文献求助10
4秒前
4秒前
dryan1110完成签到,获得积分10
5秒前
JingjingWang发布了新的文献求助10
6秒前
6秒前
蓝天应助再学一会采纳,获得10
7秒前
lvxuan发布了新的文献求助20
7秒前
zhs完成签到,获得积分10
7秒前
9秒前
SciGPT应助NiNi采纳,获得10
11秒前
落寞天玉发布了新的文献求助10
11秒前
冷傲的竺完成签到 ,获得积分10
12秒前
在水一方应助周浩宇采纳,获得10
13秒前
852应助dryan1110采纳,获得10
13秒前
桐桐应助凤梨罐头采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
19秒前
19秒前
18216781882完成签到,获得积分10
20秒前
酷波er应助黄芪2号采纳,获得10
21秒前
22秒前
23秒前
23秒前
24秒前
NiNi发布了新的文献求助10
24秒前
852应助落寞天玉采纳,获得10
24秒前
冯璟钰发布了新的文献求助10
25秒前
26秒前
天天科研完成签到,获得积分10
26秒前
田様应助万物可爱采纳,获得10
26秒前
科研通AI6应助leey采纳,获得10
27秒前
冷傲的竺关注了科研通微信公众号
27秒前
权志龙完成签到,获得积分10
27秒前
douzi关注了科研通微信公众号
28秒前
Miss-Li发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655357
求助须知:如何正确求助?哪些是违规求助? 4798581
关于积分的说明 15072683
捐赠科研通 4813771
什么是DOI,文献DOI怎么找? 2575350
邀请新用户注册赠送积分活动 1530700
关于科研通互助平台的介绍 1489366