Clinical Application of Artificial Intelligence in Breast MRI

医学 乳房磁振造影 放射科 医学物理学 磁共振成像 人工智能 乳腺摄影术 内科学 乳腺癌 癌症 计算机科学
作者
Jong-Min Kim,Su Min Ha
标识
DOI:10.3348/jksr.2025.0012
摘要

Breast MRI is the most sensitive imaging modality for detecting breast cancer. However, its widespread use is limited by factors such as extended examination times, need for contrast agents, and susceptibility to motion artifacts. Artificial intelligence (AI) has emerged as a promising solution for these challenges by enhancing the efficiency and accuracy of breast MRI in multiple domains. AI-driven image reconstruction techniques have significantly reduced scan times while preserving image quality. This method outperforms traditional parallel imaging and compressed sensing. AI has also shown great promise for lesion classification and segmentation, with convolutional neural networks and U-Net architectures improving the differentiation between benign and malignant lesions. AI-based segmentation methods enable accurate tumor detection and characterization, thereby aiding personalized treatment planning. An AI triaging system has demonstrated the potential to streamline workflow efficiency by identifying low-suspicion cases and reducing the workload of radiologists. Another promising application is synthetic breast MR image generation, which aims to generate contrast enhanced images from non-contrast sequences, thereby improving accessibility and patient safety. Further research is required to validate AI models across diverse populations and imaging protocols. As AI continues to evolve, it is expected to play an important role in the optimization of breast MRI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀友容发布了新的文献求助10
1秒前
xinyu发布了新的文献求助10
1秒前
2秒前
Eliauk关注了科研通微信公众号
2秒前
乐乐发布了新的文献求助10
2秒前
隐形曼青应助李白采纳,获得10
3秒前
3秒前
CodeCraft应助Billy采纳,获得30
3秒前
4秒前
干净元容完成签到,获得积分20
4秒前
Jiro完成签到,获得积分10
6秒前
6秒前
酷炫的__完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助20
7秒前
7秒前
lvsehx完成签到,获得积分20
8秒前
舒适冷玉发布了新的文献求助10
8秒前
xx发布了新的文献求助10
8秒前
8秒前
低头发布了新的文献求助10
9秒前
10秒前
66完成签到,获得积分10
10秒前
10秒前
H·Y完成签到,获得积分10
10秒前
华仔应助庄严采纳,获得10
11秒前
一二发布了新的文献求助10
11秒前
lvsehx发布了新的文献求助30
12秒前
12秒前
13秒前
lirui完成签到,获得积分10
13秒前
杨杰发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
完美的立辉完成签到,获得积分10
16秒前
隐形曼青应助调皮的蓝天采纳,获得10
16秒前
无花果应助乐乐采纳,获得10
17秒前
CipherSage应助xx采纳,获得30
17秒前
Bepa发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867785
求助须知:如何正确求助?哪些是违规求助? 4159730
关于积分的说明 12898784
捐赠科研通 3913874
什么是DOI,文献DOI怎么找? 2149487
邀请新用户注册赠送积分活动 1168010
关于科研通互助平台的介绍 1070422