Superpixel-Based and Spatially Regularized Diffusion Learning for Unsupervised Hyperspectral Image Clustering

高光谱成像 聚类分析 计算机科学 人工智能 模式识别(心理学) 无监督学习 图像(数学) 遥感 地质学
作者
Kangning Cui,Ruoning Li,Sam L. Polk,Yinyi Lin,Hongsheng Zhang,James M. Murphy,Robert J. Plemmons,Raymond H. Chan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:19
标识
DOI:10.1109/tgrs.2024.3385202
摘要

Hyperspectral images (HSIs) provide exceptional spatial and spectral resolution of a scene, crucial for various remote sensing applications. However, the high dimensionality, presence of noise and outliers, and the need for precise labels of HSIs present significant challenges to the analysis of HSIs, motivating the development of performant HSI clustering algorithms. This paper introduces a novel unsupervised HSI clustering algorithm—Superpixel-based and Spatially-regularized Diffusion Learning (S 2 DL)—which addresses these challenges by incorporating rich spatial information encoded in HSIs into diffusion geometry-based clustering. S 2 DL employs the Entropy Rate Superpixel (ERS) segmentation technique to partition an image into superpixels, then constructs a spatially-regularized diffusion graph using the most representative high-density pixels. This approach reduces computational burden while preserving accuracy. Cluster modes, serving as exemplars for underlying cluster structure, are identified as the highest-density pixels farthest in diffusion distance from other highest-density pixels. These modes guide the labeling of the remaining representative pixels from ERS superpixels. Finally, majority voting is applied to the labels assigned within each superpixel to propagate labels to the rest of the image. This spatial-spectral approach simultaneously simplifies graph construction, reduces computational cost, and improves clustering performance. S 2 DL's performance is illustrated with extensive experiments on four publicly available, real-world HSIs: Indian Pines, Salinas, Salinas A, and WHU-Hi. Additionally, we apply S 2 DL to landscape-scale, unsupervised mangrove species mapping in the Mai Po Nature Reserve, Hong Kong, using a Gaofen-5 HSI. The success of S 2 DL in these diverse numerical experiments indicates its efficacy on a wide range of important unsupervised remote sensing analysis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhj666完成签到,获得积分10
刚刚
老实难敌发布了新的文献求助10
1秒前
科研通AI5应助下雨采纳,获得10
2秒前
2秒前
Upupuu发布了新的文献求助10
2秒前
Theprisoners发布了新的文献求助10
2秒前
今后应助米米采纳,获得10
2秒前
Akim应助自由寒云采纳,获得10
3秒前
CodeCraft应助lvlijun采纳,获得10
3秒前
3秒前
wrwywzx发布了新的文献求助10
3秒前
阿白完成签到,获得积分10
4秒前
可爱的函函应助just采纳,获得10
4秒前
ysyslalala完成签到,获得积分10
5秒前
5秒前
丘比特应助科研圈外人采纳,获得10
6秒前
22完成签到,获得积分20
6秒前
达夫斯基完成签到,获得积分10
7秒前
Orange应助TYT采纳,获得10
7秒前
8秒前
朱大头完成签到,获得积分10
8秒前
9秒前
9秒前
younghippo发布了新的文献求助30
10秒前
10秒前
ZNan完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
lylyzhl发布了新的文献求助10
13秒前
小二郎应助曹沛岚采纳,获得10
13秒前
22发布了新的文献求助10
13秒前
ding应助李李采纳,获得10
13秒前
乐乐应助果蝇之母采纳,获得10
13秒前
山南水北发布了新的文献求助30
13秒前
巨小俊完成签到,获得积分10
14秒前
朱朱发布了新的文献求助10
14秒前
wwj完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
理论力学 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464173
求助须知:如何正确求助?哪些是违规求助? 3926519
关于积分的说明 12185073
捐赠科研通 3579284
什么是DOI,文献DOI怎么找? 1966586
邀请新用户注册赠送积分活动 1005238
科研通“疑难数据库(出版商)”最低求助积分说明 899634