DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star完成签到,获得积分10
1秒前
1秒前
cpt123123完成签到,获得积分10
1秒前
1秒前
Chris完成签到 ,获得积分10
2秒前
2秒前
Orange应助lla2321采纳,获得10
3秒前
3秒前
3秒前
nyms完成签到,获得积分10
4秒前
5秒前
5秒前
Ava应助中原第一深情采纳,获得10
5秒前
ph发布了新的文献求助10
5秒前
6秒前
6秒前
欲目完成签到 ,获得积分10
6秒前
nyms发布了新的文献求助30
7秒前
嘿嘿发布了新的文献求助10
8秒前
起床做核酸完成签到,获得积分10
9秒前
10秒前
火花发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
英俊的铭应助聪明的中心采纳,获得10
11秒前
12秒前
xiaoxiao1992应助卡密尔采纳,获得30
12秒前
嗯哈完成签到 ,获得积分10
13秒前
gaterina发布了新的文献求助10
14秒前
请叫我竹然兄完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
16秒前
阿庆完成签到,获得积分10
17秒前
打打应助Eina采纳,获得10
17秒前
天天快乐应助CH采纳,获得10
17秒前
烟花应助诸葛一笑采纳,获得10
17秒前
科研通AI6应助哈哈哈哈哈采纳,获得10
17秒前
华风完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411568
求助须知:如何正确求助?哪些是违规求助? 4529098
关于积分的说明 14117750
捐赠科研通 4443714
什么是DOI,文献DOI怎么找? 2438381
邀请新用户注册赠送积分活动 1430605
关于科研通互助平台的介绍 1408214