Fine-tuned YOLOv5 for real-time vehicle detection in UAV imagery: Architectural improvements and performance boost

计算机科学 最小边界框 卷积神经网络 目标检测 人工智能 推论 失败 深度学习 跳跃式监视 特征(语言学) 实时计算 机器学习 计算机视觉 模式识别(心理学) 图像(数学) 语言学 哲学 并行计算
作者
Mohammad Hossein Hamzenejadi,Hadis Mohseni
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:231: 120845-120845 被引量:37
标识
DOI:10.1016/j.eswa.2023.120845
摘要

Nowadays, Unmanned Aerial Vehicles (UAVs) have become useful for various civil applications, such as traffic monitoring and smart parkings, where real-time vehicle detection and classification is one of the key tasks. There are many challenges in detecting vehicles including small size objects and the variety in the UAV’s altitude and angle. As classic object detection solutions have limitations in confronting these challenges, recent methods are developed based on convolutional neural networks and their ability in effective feature learning. Due to the computational complexity in these networks and the need for accurate and real-time object detection, balancing the accuracy and inference speed is obligatory for efficiency. This paper aims to propose an accurate, efficient and real-time vehicle detection network based on the successful YOLOv5 object detection model. This is done by improving the structure of the model, adding attention mechanism and using an adaptive bounding box regression loss function. Also, considering the need for real-time inference speed, the depth and width of the model was balanced and ghost convolution was incorporated into the Neck unit to further improve the balance between accuracy and inference speed. The proposed method is evaluated on three different urban UAV imagery datasets, VisDrone, CARPK and VAID, specifically intended for civil applications. Comparing the obtained results from the proposed method with YOLOv5 baseline models, it achieved 3.52% higher mAP50 and 207.15% higher FPS than YOLOv5X on VisDrone dataset, while it is much smaller in size and GFLOPS. Totally, the proposed network outcomes show how the applied structural and conceptual modifications can upgrade the YOLO family towards being small in size, high in accuracy and fast in inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助t忒对采纳,获得10
1秒前
pain豆先生完成签到 ,获得积分10
1秒前
蒋j完成签到,获得积分10
1秒前
2秒前
可爱的函函应助蔺不平采纳,获得30
2秒前
科研通AI5应助易辰采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得30
4秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
2478甯完成签到,获得积分10
5秒前
自然访彤完成签到,获得积分10
6秒前
6秒前
彭佳丽发布了新的文献求助10
6秒前
hysmoment发布了新的文献求助10
6秒前
悲凉的半凡完成签到,获得积分20
7秒前
7秒前
彭于晏应助Stefano采纳,获得10
9秒前
酷波er应助dddddd采纳,获得10
10秒前
11秒前
猪咪发布了新的文献求助10
11秒前
装好心发布了新的文献求助10
12秒前
Neko发布了新的文献求助10
13秒前
小凌完成签到,获得积分10
14秒前
ctq完成签到 ,获得积分10
15秒前
16秒前
16秒前
mimihu完成签到,获得积分10
18秒前
19秒前
装好心完成签到,获得积分10
21秒前
Orange应助彭佳丽采纳,获得10
21秒前
Shiku发布了新的文献求助10
22秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814726
求助须知:如何正确求助?哪些是违规求助? 3358861
关于积分的说明 10397714
捐赠科研通 3076223
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813214
科研通“疑难数据库(出版商)”最低求助积分说明 767548