Joint variational autoencoders for multimodal imputation and embedding

计算机科学 插补(统计学) 人工智能 接头(建筑物) 机器学习 嵌入 缺少数据 结构工程 工程类
作者
Noah Cohen Kalafut,Xiang Huang,Daifeng Wang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (6): 631-642 被引量:27
标识
DOI:10.1038/s42256-023-00663-z
摘要

Single-cell multimodal datasets have measured various characteristics of individual cells, enabling a deep understanding of cellular and molecular mechanisms. However, multimodal data generation remains costly and challenging, and missing modalities happen frequently. Recently, machine learning approaches have been developed for data imputation but typically require fully matched multimodalities to learn common latent embeddings that potentially lack modality specificity. To address these issues, we developed an open-source machine learning model, Joint Variational Autoencoders for multimodal Imputation and Embedding (JAMIE). JAMIE takes single-cell multimodal data that can have partially matched samples across modalities. Variational autoencoders learn the latent embeddings of each modality. Then, embeddings from matched samples across modalities are aggregated to identify joint cross-modal latent embeddings before reconstruction. To perform cross-modal imputation, the latent embeddings of one modality can be used with the decoder of the other modality. For interpretability, Shapley values are used to prioritize input features for cross-modal imputation and known sample labels. We applied JAMIE to both simulation data and emerging single-cell multimodal data including gene expression, chromatin accessibility, and electrophysiology in human and mouse brains. JAMIE significantly outperforms existing state-of-the-art methods in general and prioritized multimodal features for imputation, providing potentially novel mechanistic insights at cellular resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦24发布了新的文献求助10
1秒前
2秒前
Evan完成签到,获得积分10
5秒前
zzzrx发布了新的文献求助10
5秒前
长剑玉珥完成签到,获得积分20
6秒前
7秒前
Orange应助orchid采纳,获得10
7秒前
8秒前
王昕钥完成签到,获得积分10
8秒前
小星历险记完成签到 ,获得积分10
10秒前
蟹xie发布了新的文献求助10
11秒前
Li发布了新的文献求助10
11秒前
zzzrx完成签到,获得积分20
11秒前
鱼咬羊发布了新的文献求助10
11秒前
玛卡巴卡呼噜呼噜完成签到,获得积分10
13秒前
玩命蛋挞完成签到,获得积分10
14秒前
Jarvis完成签到,获得积分10
16秒前
悦24完成签到,获得积分10
16秒前
天天快乐应助土豪的飞荷采纳,获得10
17秒前
xsnyy完成签到 ,获得积分10
20秒前
21秒前
22秒前
jiexika完成签到,获得积分10
24秒前
baihanjunluo发布了新的文献求助10
24秒前
24秒前
zhc990807发布了新的文献求助10
25秒前
MAGICALEYE发布了新的文献求助10
26秒前
YCG完成签到 ,获得积分10
27秒前
28秒前
29秒前
zhc990807完成签到,获得积分20
29秒前
31秒前
Reset发布了新的文献求助10
31秒前
科研通AI5应助MAGICALEYE采纳,获得10
32秒前
Akim应助MAGICALEYE采纳,获得10
32秒前
32秒前
cyj完成签到,获得积分10
33秒前
大眼的平松完成签到,获得积分10
34秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4769541
求助须知:如何正确求助?哪些是违规求助? 4105547
关于积分的说明 12700030
捐赠科研通 3823991
什么是DOI,文献DOI怎么找? 2110389
邀请新用户注册赠送积分活动 1134677
关于科研通互助平台的介绍 1016195