Joint variational autoencoders for multimodal imputation and embedding

计算机科学 插补(统计学) 人工智能 接头(建筑物) 机器学习 嵌入 缺少数据 结构工程 工程类
作者
Noah Cohen Kalafut,Xiang Huang,Daifeng Wang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (6): 631-642 被引量:52
标识
DOI:10.1038/s42256-023-00663-z
摘要

Single-cell multimodal datasets have measured various characteristics of individual cells, enabling a deep understanding of cellular and molecular mechanisms. However, multimodal data generation remains costly and challenging, and missing modalities happen frequently. Recently, machine learning approaches have been developed for data imputation but typically require fully matched multimodalities to learn common latent embeddings that potentially lack modality specificity. To address these issues, we developed an open-source machine learning model, Joint Variational Autoencoders for multimodal Imputation and Embedding (JAMIE). JAMIE takes single-cell multimodal data that can have partially matched samples across modalities. Variational autoencoders learn the latent embeddings of each modality. Then, embeddings from matched samples across modalities are aggregated to identify joint cross-modal latent embeddings before reconstruction. To perform cross-modal imputation, the latent embeddings of one modality can be used with the decoder of the other modality. For interpretability, Shapley values are used to prioritize input features for cross-modal imputation and known sample labels. We applied JAMIE to both simulation data and emerging single-cell multimodal data including gene expression, chromatin accessibility, and electrophysiology in human and mouse brains. JAMIE significantly outperforms existing state-of-the-art methods in general and prioritized multimodal features for imputation, providing potentially novel mechanistic insights at cellular resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuang完成签到,获得积分10
2秒前
乐观摸摸头完成签到 ,获得积分10
2秒前
自行设置发布了新的文献求助10
3秒前
山城小丸完成签到,获得积分10
3秒前
小兔完成签到 ,获得积分10
4秒前
5秒前
乐观安蕾完成签到,获得积分10
5秒前
超级的鹅完成签到,获得积分10
5秒前
5秒前
优美翠丝完成签到,获得积分20
6秒前
6秒前
斯文败类应助gdh采纳,获得10
6秒前
7秒前
乐观安蕾发布了新的文献求助10
8秒前
小葛完成签到,获得积分10
8秒前
dora完成签到,获得积分10
9秒前
蒋梓松完成签到,获得积分10
9秒前
11秒前
sunqian发布了新的文献求助10
11秒前
11秒前
13秒前
英俊的铭应助柠柠采纳,获得10
13秒前
lepus完成签到,获得积分10
14秒前
14秒前
gdh完成签到,获得积分10
14秒前
斯文可仁发布了新的文献求助10
15秒前
15秒前
元首发布了新的文献求助10
16秒前
hgf发布了新的文献求助10
16秒前
16秒前
16秒前
Joseph_sss完成签到 ,获得积分10
17秒前
浮游应助大黄采纳,获得10
17秒前
优美翠丝关注了科研通微信公众号
18秒前
火桑花完成签到,获得积分10
18秒前
Andrea完成签到,获得积分10
18秒前
19秒前
gdh发布了新的文献求助10
19秒前
超帅寻双发布了新的文献求助10
19秒前
浮游应助zyf采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492