A deep clustering-based mass spectral data visualization strategy for anti-renal fibrotic lead compound identification from natural products

可视化 聚类分析 鉴定(生物学) 铅(地质) 注释 化学 天狼星 计算机科学 数据挖掘 人工智能 计算机视觉 生物 植物 星星 古生物学
作者
Jieying Lai,Lichuang Huang,Yini Bao,Lu Wang,Qiang Lyu,Haodan Kuang,Kuilong Wang,Xianan Sang,Qiao Yang,Qiyuan Shan,Gang Cao
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:147 (21): 4739-4751 被引量:4
标识
DOI:10.1039/d2an01185a
摘要

Natural products have been a key source of drug lead discovery. However, their identification has long been a challenge even with the state-of-the-art analysis technologies like high-resolution mass spectrometry (MS) due to their complexity. Emerging in silico chemical structure prediction tools have provided time-saving and highly efficient approaches for identification of these complex samples. Nevertheless, the interpretation of these MS annotations into key supporting evidence towards specific questions is still a bottleneck in medicinal and biological fields. Here we present a deep clustering-based MS data visualization strategy (MCnebula), integrated with the influential open-source automatic MS annotation platform SIRIUS and in vivo and in vitro methods, to screen and validate potential lead compounds from natural products. MCnebula could provide multi-layer clustering profiles with chemical ontologies and comparative analysis of differential treatments. Plantaginis Semen (PS) is commonly used for treating kidney disease and usually stir-fried with salt water to enhance its anti-renal fibrosis effect, but the reason behind this remains unclear. Taking PS as an example, we comprehensively identified and compared the raw and processed PS extracts with SIRIUS-MCnebula, and screened potential anti-renal fibrotic lead compounds using weighted fold change analysis. Eighty-nine components were identified in PS with isoacteoside, calceolarioside B, 2'-acetylacteoside, and plantainoside D being screened and validated to treat renal fibrosis. The novel developed mass spectral data visualization strategy combined with biological function investigation and validation workflow could not only accelerate the discovery of lead compounds from medicinal natural products, but also shed new light on the traditional processing theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助金鱼采纳,获得10
1秒前
哭泣茗发布了新的文献求助10
1秒前
1秒前
缓冲间完成签到,获得积分20
2秒前
斯文败类应助xiaoming采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
3秒前
linjane发布了新的文献求助30
6秒前
yy完成签到,获得积分10
8秒前
悦耳代云完成签到 ,获得积分10
10秒前
汉堡包应助雪梨采纳,获得10
10秒前
桐桐应助ZXFFF采纳,获得10
11秒前
12秒前
linjane完成签到,获得积分10
13秒前
xiaoming完成签到,获得积分10
15秒前
帅比邹完成签到 ,获得积分10
16秒前
金鱼发布了新的文献求助10
17秒前
17秒前
LYL完成签到,获得积分10
18秒前
Akim应助lizhiqian2024采纳,获得10
18秒前
19秒前
ZXFFF完成签到,获得积分10
20秒前
模子完成签到,获得积分10
22秒前
22秒前
ZXFFF发布了新的文献求助10
22秒前
24秒前
26秒前
27秒前
28秒前
听话的捕完成签到,获得积分10
29秒前
科研通AI5应助猪猪hero采纳,获得10
29秒前
科研通AI5应助过儿采纳,获得10
29秒前
小马甲应助lizhiqian2024采纳,获得10
30秒前
tx完成签到,获得积分20
30秒前
李健应助奎花籽采纳,获得10
32秒前
略略发布了新的文献求助10
32秒前
tx发布了新的文献求助10
34秒前
孙瞳完成签到,获得积分10
37秒前
mio完成签到,获得积分20
37秒前
37秒前
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348237
关于积分的说明 10337188
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682449
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010