MSKD: Structured knowledge distillation for efficient medical image segmentation

计算机科学 分割 人工智能 医学诊断 机器学习 利用 人工神经网络 图像分割 蒸馏 数据挖掘 模式识别(心理学) 医学 化学 计算机安全 有机化学 病理
作者
Libo Zhao,Xiaolong Qian,Yinghui Guo,Jiaqi Song,Jinbao Hou,Jun Gong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107284-107284 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.107284
摘要

In recent years, deep learning has revolutionized the field of medical image segmentation by enabling the development of powerful deep neural networks. However, these models tend to be complex and computationally demanding, posing challenges for practical implementation in clinical settings. To address this issue, we propose an efficient structured knowledge distillation framework that leverages a powerful teacher network to assist in training a lightweight student network. Specifically, we propose the Feature Filtering Distillation method, which focuses on transferring region-level semantic information while minimizing redundant information transmission from the teacher to the student network. This approach effectively mitigates the problem of inaccurate segmentation caused by similar internal organ characteristics. Additionally, we propose the Region Graph Distillation method, which exploits the higher-order representational capabilities of graphs to enable the student network to better imitate structured semantic information from the teacher. To validate the effectiveness of our proposed methods, we conducted experiments on the Synapse multi-organ segmentation and KiTS kidney tumor segmentation datasets using various network models. The results demonstrate that our method significantly improves the segmentation performance of lightweight neural networks, with improvements of up to 18.56% in Dice coefficient. Importantly, our approach achieves these improvements without introducing additional model parameters. Overall, our proposed knowledge distillation methods offer a promising solution for efficient medical image segmentation, empowering medical experts to make more accurate diagnoses and improve patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
彦祖发布了新的文献求助10
2秒前
浙琳完成签到,获得积分10
4秒前
LL发布了新的文献求助10
4秒前
hq完成签到 ,获得积分10
6秒前
6秒前
浙琳发布了新的文献求助10
9秒前
小马甲应助落寞灵安采纳,获得10
11秒前
selena完成签到,获得积分10
12秒前
13秒前
田格本发布了新的文献求助10
13秒前
15秒前
XUUGO发布了新的文献求助10
15秒前
裴白薇完成签到 ,获得积分10
16秒前
20秒前
21秒前
luochen完成签到 ,获得积分0
22秒前
22秒前
Qin完成签到,获得积分10
23秒前
24秒前
重生之我是院士完成签到,获得积分10
25秒前
racheal完成签到,获得积分20
26秒前
落寞灵安发布了新的文献求助10
27秒前
Tsuki发布了新的文献求助10
28秒前
lizishu应助小胖酱采纳,获得10
28秒前
32秒前
077完成签到,获得积分10
35秒前
小施发布了新的文献求助10
35秒前
36秒前
科研通AI6.1应助彦祖采纳,获得10
39秒前
Sahar发布了新的文献求助10
39秒前
懒癌晚期完成签到,获得积分10
39秒前
独特忆灵完成签到,获得积分10
41秒前
42秒前
Adc应助大地采纳,获得10
42秒前
xinxin完成签到,获得积分10
43秒前
1234完成签到 ,获得积分10
46秒前
xinxin发布了新的文献求助10
47秒前
彩色的芷容完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839072
求助须知:如何正确求助?哪些是违规求助? 6136564
关于积分的说明 15602548
捐赠科研通 4957059
什么是DOI,文献DOI怎么找? 2672017
邀请新用户注册赠送积分活动 1617131
关于科研通互助平台的介绍 1572144