MSKD: Structured knowledge distillation for efficient medical image segmentation

计算机科学 分割 人工智能 医学诊断 机器学习 利用 人工神经网络 图像分割 蒸馏 数据挖掘 模式识别(心理学) 医学 化学 计算机安全 有机化学 病理
作者
Libo Zhao,Xiaolong Qian,Yinghui Guo,Jiaqi Song,Jinbao Hou,Jun Gong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107284-107284 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.107284
摘要

In recent years, deep learning has revolutionized the field of medical image segmentation by enabling the development of powerful deep neural networks. However, these models tend to be complex and computationally demanding, posing challenges for practical implementation in clinical settings. To address this issue, we propose an efficient structured knowledge distillation framework that leverages a powerful teacher network to assist in training a lightweight student network. Specifically, we propose the Feature Filtering Distillation method, which focuses on transferring region-level semantic information while minimizing redundant information transmission from the teacher to the student network. This approach effectively mitigates the problem of inaccurate segmentation caused by similar internal organ characteristics. Additionally, we propose the Region Graph Distillation method, which exploits the higher-order representational capabilities of graphs to enable the student network to better imitate structured semantic information from the teacher. To validate the effectiveness of our proposed methods, we conducted experiments on the Synapse multi-organ segmentation and KiTS kidney tumor segmentation datasets using various network models. The results demonstrate that our method significantly improves the segmentation performance of lightweight neural networks, with improvements of up to 18.56% in Dice coefficient. Importantly, our approach achieves these improvements without introducing additional model parameters. Overall, our proposed knowledge distillation methods offer a promising solution for efficient medical image segmentation, empowering medical experts to make more accurate diagnoses and improve patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cnm完成签到,获得积分20
刚刚
自由马丁完成签到 ,获得积分10
刚刚
胡浩完成签到 ,获得积分20
刚刚
1秒前
1秒前
2秒前
3秒前
4秒前
天天向上完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
cnm发布了新的文献求助10
6秒前
vfi完成签到,获得积分20
6秒前
fedehe发布了新的文献求助10
7秒前
lagertha发布了新的文献求助10
8秒前
小二郎应助孙芳采纳,获得10
8秒前
wuchun完成签到,获得积分10
9秒前
wangjie发布了新的文献求助10
9秒前
10秒前
x夏天完成签到 ,获得积分10
11秒前
ZengQiu发布了新的文献求助10
12秒前
pluto应助鲁西西采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
土豆你个西红柿完成签到 ,获得积分10
13秒前
木阳完成签到,获得积分10
13秒前
Andy_2024完成签到,获得积分10
13秒前
14秒前
CAOHOU应助肖旻采纳,获得10
14秒前
眼睛大的冰岚完成签到,获得积分10
15秒前
17秒前
优秀扬完成签到,获得积分10
17秒前
18秒前
ZZZ发布了新的文献求助10
19秒前
19秒前
19秒前
金金发布了新的文献求助20
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186445
求助须知:如何正确求助?哪些是违规求助? 3722431
关于积分的说明 11729348
捐赠科研通 3400375
什么是DOI,文献DOI怎么找? 1865854
邀请新用户注册赠送积分活动 922848
科研通“疑难数据库(出版商)”最低求助积分说明 834276