Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal–Organic Frameworks with Controllable Thickness

化学 阳极 配体(生物化学) 阳极氧化 纳米技术 导电体 电极 金属 化学工程 金属有机骨架 组合化学 材料科学 有机化学 复合材料 物理化学 生物化学 受体 吸附 工程类
作者
Min Song,Jingjing Jia,Pingping Li,Jiahao Peng,Xinghan Pang,Meiling Qi,Yulong Xu,Long Chen,Lifeng Chi,Guang Lü
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (47): 25570-25578 被引量:12
标识
DOI:10.1021/jacs.3c05606
摘要

Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu3(HHTP)2, 2D Zn3(HHTP)2, 2D Co3(HHTP)2, 3D YbHHTP, and 2D Cu2TBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes. This anodic strategy relies on the oxidation of redox-active catechol ligands and follows a stepwise electrochemical-chemical reaction mechanism to achieve effective control over crystallizing M-catecholate MOFs into films oriented in the [001] direction. Benefiting from the electrically conductive nature, Cu3(HHTP)2 films could be thickened at a steady rate (17.4 nm·min-1) from ∼90 nm to 10.7 μm via a growth mechanism differing from those adopted in previous electrochemical synthesis of dense MOF films with limited thickness due to the self-inhibition effect. This anodic synthesis could be further combined with a templating strategy to fabricate not only films with well-defined 2D features in sizes from micrometers to millimeters but also high aspect ratio mesostructures, such as nanorods, of Cu3(HHTP)2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助科研八戒采纳,获得10
刚刚
zhehuai发布了新的文献求助10
1秒前
酷波er应助腼腆的踏歌采纳,获得10
1秒前
3秒前
3秒前
scdd完成签到 ,获得积分10
3秒前
今后应助2306520采纳,获得10
3秒前
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
兮遥遥完成签到 ,获得积分10
5秒前
5秒前
ZhouYW应助科研通管家采纳,获得10
5秒前
汉堡包应助灿烂千阳采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
ZhouYW应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
聪明的谷菱完成签到 ,获得积分10
5秒前
科研通AI5应助晚风采纳,获得10
6秒前
钱钱钱发布了新的文献求助10
7秒前
8秒前
8秒前
Joyj99发布了新的文献求助10
9秒前
9秒前
科目三应助Dawn采纳,获得10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814219
求助须知:如何正确求助?哪些是违规求助? 3358448
关于积分的说明 10394718
捐赠科研通 3075691
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812972
科研通“疑难数据库(出版商)”最低求助积分说明 767416