Preoperative detection of lymphovascular invasion in rectal cancer using intravoxel incoherent motion imaging based on radiomics

无线电技术 盒内非相干运动 淋巴血管侵犯 接收机工作特性 医学 核医学 逻辑回归 放射科 磁共振弥散成像 磁共振成像 人工智能 计算机科学 癌症 转移 内科学
作者
Chinting Wong,Tong Liu,Chunyu Zhang,Mingyang Li,Huimao Zhang,Quan Wang,Yu Fu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 179-191 被引量:7
标识
DOI:10.1002/mp.16821
摘要

Abstract Background Lymphovascular invasion (LVI) status plays an important role in treatment decision‐making in rectal cancer (RC). Intravoxel incoherent motion (IVIM) imaging has been shown to detect LVI; however, making better use of IVIM data remains an important issue that needs to be discussed. Purpose We proposed to explore the best way to use IVIM quantitative parameters and images to construct radiomics models for the noninvasive detection of LVI in RC. Methods A total of 83 patients (LVI negative (LVI‐): LVI positive (LVI+) = 51:32) with postoperative pathology‐confirmed LVI status in RC were divided into a training group ( n = 58) and a validation group ( n = 25). Images were acquired from a 3.0 Tesla machine, including oblique axial T2 weighted imaging (T2WI) and IVIM with 11 b values. The ADC, D, D * and f values were measured on IVIM maps. The ROIs of tumors were delineated on T2WI, DWI, ADC map , and D map images, and three mapping methods were used: ROIs_mapping from DWI, ROIs_mapping from ADC map , and ROIs_mapping from D map . Three‐dimensional radiomics features were extracted from the delineated ROIs. Multivariate logistic regression was used for radiomics feature selection. Radiomics models based on different mapping methods were developed. Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were used to evaluate the performance of the models. Results Model B, which was constructed with radiomics features from ADC map , D map and f map by “ROIs_mapping from DWI” and T2WI (AUC 0.894), performed better than other models based on single sequence (AUC 0.600‐0.806) and even better than Model A, which was based on “ROIs_mapping from ADC” and T2WI (AUC 0.838). Furthermore, an integrated model was constructed with Model B and the IVIM parameter (f value) with an AUC of 0.920 (95% CI: 0.820‐1.000), which was higher than that of Model B, in the validation group. Conclusions The integrated model incorporating the radiomics features and IVIM parameters accurately detected LVI of RC. The “ROIs_mapping from DWI” method provided the best results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助meizijiu采纳,获得10
3秒前
顺利静竹完成签到,获得积分20
3秒前
4秒前
4秒前
科研通AI5应助古清采纳,获得10
4秒前
水桶完成签到,获得积分10
5秒前
ding应助淼淼1采纳,获得10
5秒前
6秒前
学术小白完成签到,获得积分10
7秒前
1号选手发布了新的文献求助10
7秒前
天天快乐应助顺利小蝴蝶采纳,获得10
9秒前
zz发布了新的文献求助10
11秒前
Able阿拉基发布了新的文献求助10
11秒前
13秒前
王小豆完成签到,获得积分10
13秒前
Gyy完成签到,获得积分10
14秒前
肖雪依完成签到,获得积分10
15秒前
15秒前
fanyy完成签到 ,获得积分10
16秒前
16秒前
17秒前
Eraaaaa发布了新的文献求助10
18秒前
墨尘发布了新的文献求助30
19秒前
zyw完成签到,获得积分10
19秒前
19秒前
SciGPT应助hxd采纳,获得10
20秒前
枓研通管家完成签到,获得积分10
20秒前
mimosal发布了新的文献求助10
21秒前
Lucas应助南浅采纳,获得10
21秒前
Wind发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
zho应助hhan采纳,获得10
22秒前
HY发布了新的文献求助10
23秒前
24秒前
小二郎应助墨尘采纳,获得30
24秒前
笑点低的牛二完成签到 ,获得积分10
24秒前
24秒前
坦率访梦完成签到,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110