已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CommunityAF: An Example-Based Community Search Method via Autoregressive Flow

计算机科学 可扩展性 组分(热力学) 灵活性(工程) 图形 机器学习 数据挖掘 排名(信息检索) 节点(物理) 人工智能 生成模型 生成语法 理论计算机科学 数学 数据库 热力学 统计 物理 工程类 结构工程
作者
Jiazun Chen,Yikuan Xia,Jun Gao
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:16 (10): 2565-2577 被引量:8
标识
DOI:10.14778/3603581.3603595
摘要

Example-based community search utilizes hidden patterns of given examples rather than explicit rules, reducing users' burden and enhancing flexibility. However, existing works face challenges such as low scalability, high training cost, and improper termination during the search. Aiming at tackling all these issues, this paper proposes a community search framework named CommunityAF with three well-designed components. The first is a GNN (graph neural network) component that combines community-aware structure features to incrementally learn node embeddings over a large graph for the other two components. The second is an autoregres-sive flow-based generation component designed for fast training and model stability. The third is a scoring component that evaluates the communities and provides scores for a stable termination. Moreover, to show that CommunityAF has the sufficient expressive power to cover the rules, we demonstrate that the scoring component with node features weighted by degree-related factors is able to mimic the existing structure-based community metrics. We introduce a square ranking loss to guide the training of the scoring component, and further devise a flexible termination strategy based on the inferred score change pattern over a sequence of candidate communities using beam search. We compare CommunityAF with four different categories of community search methods on six real-world datasets. The results illustrate that CommunityAF outperforms these community search methods, and achieves an average 15.3% improvement in effectiveness and 4x to 20x speedups on different datasets relative to the state-of-the-art generative method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡咧咧发布了新的文献求助10
4秒前
6秒前
8秒前
萝卜完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助白巧小丸子采纳,获得10
9秒前
YJL发布了新的文献求助10
10秒前
星宇完成签到 ,获得积分10
11秒前
假期会发芽完成签到 ,获得积分10
11秒前
微11发布了新的文献求助10
12秒前
12秒前
兴奋灵发布了新的文献求助10
12秒前
白樱恋曲完成签到 ,获得积分10
14秒前
hammer发布了新的文献求助10
15秒前
科研通AI2S应助侃侃采纳,获得10
15秒前
平常的毛豆应助涵泽采纳,获得10
19秒前
Lingyu完成签到 ,获得积分10
19秒前
义气的跳跳糖完成签到,获得积分10
20秒前
asaki完成签到,获得积分10
22秒前
22秒前
科研通AI5应助卡卡咧咧采纳,获得10
24秒前
白巧小丸子完成签到,获得积分10
24秒前
灵巧尔云完成签到,获得积分10
28秒前
28秒前
yyt完成签到,获得积分20
28秒前
TT发布了新的文献求助10
28秒前
卡卡东完成签到 ,获得积分10
29秒前
LHW发布了新的文献求助10
29秒前
YJL完成签到,获得积分10
29秒前
隐形曼青应助兴奋的冰棍采纳,获得10
30秒前
溯溯完成签到 ,获得积分10
33秒前
土豪的灵竹完成签到 ,获得积分10
33秒前
kelien1205完成签到 ,获得积分10
35秒前
39秒前
40秒前
牛羊不吃草完成签到,获得积分10
42秒前
46秒前
小二郎应助Banana采纳,获得10
48秒前
Smoiy完成签到 ,获得积分10
51秒前
51秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343781
关于积分的说明 10317592
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763295