Leaf water content determination of oilseed rape using near-infrared hyperspectral imaging with deep learning regression methods

高光谱成像 偏最小二乘回归 含水量 校准 内容(测量理论) 回归 回归分析 均方误差 决定系数 卷积神经网络 支持向量机 人工智能 数学 计算机科学 模式识别(心理学) 统计 工程类 数学分析 岩土工程
作者
Chu Zhang,Cheng Li,Mengyu He,Zeyi Cai,Zhong‐Ping Feng,Hengnian Qi,Lei Zhou
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:134: 104921-104921 被引量:11
标识
DOI:10.1016/j.infrared.2023.104921
摘要

Water content is crucial for plant growth. Determination of water content can help monitor plant growth status. In this study, spectral data in the range of 900–1700 nm acquired by near-infrared hyperspectral imaging and corrected by black-white calibration were used to detect the water content of fresh oilseed rape leaves. The oilseed leaves were analyzed without particular treatments. Conventional machine learning (support vector regression, partial least squares regression and least absolute shrinkage and selection operator) and deep learning regression models (Convolutional Neural Network and Long Short-Term Memory) were developed to predict oilseed rape leaf water content. The performance of CNN-LSTM-R was highly accurate. The coefficient of determination and root mean square error of the testing set (RMSEP) were 0.814 and 0.005, respectively. The characteristic wavelengths with strong correlation with water content prediction of the regression models were analyzed. The results showed that the deep learning-based regression models showed great potential for water content determination of oilseed rape leaves. Therefore, this study provides an important theoretical basis and practical application for the detection of fresh plant water content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助rayce采纳,获得10
刚刚
李爱国应助DE采纳,获得10
刚刚
Lucas完成签到,获得积分10
刚刚
accept白发布了新的文献求助10
刚刚
王之争霸发布了新的文献求助10
1秒前
1秒前
1秒前
赘婿应助啦啦采纳,获得10
1秒前
沉默高跟鞋完成签到,获得积分10
1秒前
2秒前
3秒前
李健的粉丝团团长应助alan采纳,获得10
3秒前
4秒前
呆呆发布了新的文献求助10
4秒前
Ronnie完成签到,获得积分10
4秒前
4秒前
小手冰凉完成签到 ,获得积分10
4秒前
祭礼之龙完成签到,获得积分10
5秒前
文良颜丑完成签到,获得积分10
5秒前
蓝岳洋发布了新的文献求助10
5秒前
5秒前
gr完成签到,获得积分10
5秒前
6秒前
6秒前
糟糕的铁锤应助11哥采纳,获得50
6秒前
溫蒂完成签到,获得积分10
6秒前
乐乐应助myj采纳,获得10
6秒前
小蘑菇应助魔法披风采纳,获得10
7秒前
哒哒哒完成签到 ,获得积分10
8秒前
大萱发布了新的文献求助10
8秒前
缓慢的白开水完成签到,获得积分10
8秒前
8秒前
感动的红酒完成签到,获得积分10
9秒前
9秒前
2980083868发布了新的文献求助10
9秒前
文艺的又亦完成签到,获得积分10
9秒前
congguitar发布了新的文献求助10
10秒前
颿曦发布了新的文献求助10
10秒前
zys完成签到,获得积分10
10秒前
深情安青应助沙拉酱采纳,获得10
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813