亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review

可解释性 标杆管理 水华 计算机科学 机器学习 均方误差 人工神经网络 支持向量机 环境科学 人工智能 数据挖掘 生态学 浮游植物 营养物 统计 生物 数学 业务 营销
作者
Abdul Gaffar Sheik,Arvind Kumar,Reeza Patnaik,Sheena Kumari,Faizal Bux
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (7): 509-532 被引量:25
标识
DOI:10.1080/10643389.2023.2252313
摘要

AbstractMachine learning (ML) models are widely used methods for analyzing data from sensors and satellites to monitor climate change, predict natural disasters, and protect wildlife. However, the application of these technologies for monitoring and managing algal blooms in freshwater environments is relatively new and novel. The commonly used models in algal blooms (ABS) so far are artificial neural networks (ANN), random forests (RF), support vector machine (SVM), data-driven modeling, and long short-term memory (LSTM). In the past, researchers have mostly worked on predicting the effluent parameters, nutrients, microculture, area and weather conditions, meteorological factors, ground waters, energy optimization, and metallic substances in algal blooms using ML models. Most of the studies have employed performance metrics like root mean squared error, mean squared error, peak signal, precision, and determination coefficient as their primary model performance measures for accuracy analysis, and the usage of transfer, and activation function. While there have been some studies on this topic, several research gaps are still to be addressed. The most significant gaps are related to the limited application of ML in different algae bloom scenarios, the interpretability of ML models, and the lack of integration with existing monitoring systems. Keeping these in mind, this review article has been methodically arranged to present an overview of the past studies, their limitations, and the way forward toward the application of ML in the prediction of ABS, thus benefitting future researchers in this area. This review aims to summarize the data that are available, including some benchmarking values.HighlightsReal-time monitoring of dynamics using ML is essential for mitigating algal blooms.Various complexities hinder applications of current ML algorithms in ABS.Activation and transfer functions can be used for selection of ML to predict ABS.Integrated ML algorithms can drive feature engineering to predict and control ABS.Keywords: Activation-functionalgae bloomsmonitoringmachine learningperformance metrics and predictionHANDLING EDITORS: Hyunjung Kim and Scott Bradford Disclosure statementNo potential conflict of interest was reported by the authors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wukong完成签到,获得积分10
12秒前
橙子完成签到 ,获得积分10
27秒前
博ge完成签到 ,获得积分10
31秒前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
凤迎雪飘完成签到,获得积分10
1分钟前
赘婿应助Nikki采纳,获得10
2分钟前
Owen应助无心的土豆采纳,获得10
2分钟前
3分钟前
3分钟前
槛外人发布了新的文献求助10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
千早爱音发布了新的文献求助300
3分钟前
范ER完成签到 ,获得积分10
3分钟前
万能图书馆应助清爽伯云采纳,获得10
4分钟前
槛外人完成签到,获得积分10
4分钟前
Orange应助wqwweqwe采纳,获得10
4分钟前
dahai完成签到,获得积分10
4分钟前
5分钟前
5分钟前
清爽伯云发布了新的文献求助10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
gf完成签到 ,获得积分10
5分钟前
山野有雾都完成签到,获得积分10
5分钟前
5分钟前
阳光发布了新的文献求助10
6分钟前
6分钟前
6分钟前
范振杰发布了新的文献求助10
6分钟前
sissie发布了新的文献求助10
6分钟前
6分钟前
酷波er应助sissie采纳,获得10
6分钟前
嘿嘿应助灵巧伊采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357029
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389691
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378379