Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review

可解释性 标杆管理 水华 计算机科学 机器学习 均方误差 人工神经网络 支持向量机 环境科学 人工智能 数据挖掘 生态学 浮游植物 营养物 统计 数学 营销 业务 生物
作者
Abdul Gaffar Sheik,Arvind Kumar,Reeza Patnaik,Sheena Kumari,Faizal Bux
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (7): 509-532 被引量:30
标识
DOI:10.1080/10643389.2023.2252313
摘要

AbstractMachine learning (ML) models are widely used methods for analyzing data from sensors and satellites to monitor climate change, predict natural disasters, and protect wildlife. However, the application of these technologies for monitoring and managing algal blooms in freshwater environments is relatively new and novel. The commonly used models in algal blooms (ABS) so far are artificial neural networks (ANN), random forests (RF), support vector machine (SVM), data-driven modeling, and long short-term memory (LSTM). In the past, researchers have mostly worked on predicting the effluent parameters, nutrients, microculture, area and weather conditions, meteorological factors, ground waters, energy optimization, and metallic substances in algal blooms using ML models. Most of the studies have employed performance metrics like root mean squared error, mean squared error, peak signal, precision, and determination coefficient as their primary model performance measures for accuracy analysis, and the usage of transfer, and activation function. While there have been some studies on this topic, several research gaps are still to be addressed. The most significant gaps are related to the limited application of ML in different algae bloom scenarios, the interpretability of ML models, and the lack of integration with existing monitoring systems. Keeping these in mind, this review article has been methodically arranged to present an overview of the past studies, their limitations, and the way forward toward the application of ML in the prediction of ABS, thus benefitting future researchers in this area. This review aims to summarize the data that are available, including some benchmarking values.HighlightsReal-time monitoring of dynamics using ML is essential for mitigating algal blooms.Various complexities hinder applications of current ML algorithms in ABS.Activation and transfer functions can be used for selection of ML to predict ABS.Integrated ML algorithms can drive feature engineering to predict and control ABS.Keywords: Activation-functionalgae bloomsmonitoringmachine learningperformance metrics and predictionHANDLING EDITORS: Hyunjung Kim and Scott Bradford Disclosure statementNo potential conflict of interest was reported by the authors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chase发布了新的文献求助10
1秒前
1秒前
dan发布了新的文献求助10
2秒前
3秒前
Christina完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
舒心的秋荷完成签到,获得积分10
5秒前
小梦发布了新的文献求助10
5秒前
子非愚完成签到,获得积分10
6秒前
7秒前
欢喜寄云完成签到,获得积分10
7秒前
liu完成签到,获得积分10
7秒前
8秒前
进击的PhD应助一个屁桃采纳,获得30
10秒前
10秒前
wwb发布了新的文献求助10
11秒前
羞涩的泽洋完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
16秒前
儒雅巧荷发布了新的文献求助10
17秒前
whl发布了新的文献求助10
18秒前
18秒前
18秒前
21秒前
21秒前
Iris完成签到,获得积分10
21秒前
Chen完成签到 ,获得积分10
21秒前
眯眯眼的柠檬完成签到,获得积分20
22秒前
zak完成签到,获得积分10
22秒前
23秒前
Baneyhua发布了新的文献求助10
23秒前
方忻宇完成签到,获得积分10
24秒前
eric完成签到,获得积分10
24秒前
24秒前
24秒前
儒雅巧荷完成签到,获得积分10
25秒前
zak发布了新的文献求助10
26秒前
科研通AI6应助Ali采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643147
求助须知:如何正确求助?哪些是违规求助? 4760738
关于积分的说明 15020082
捐赠科研通 4801576
什么是DOI,文献DOI怎么找? 2566843
邀请新用户注册赠送积分活动 1524735
关于科研通互助平台的介绍 1484276