Quantitative detection of phenol red by surface enhanced Raman spectroscopy based on improved GA-BP

材料科学 拉曼光谱 银纳米粒子 拉曼散射 碳纳米管 稳健性(进化) 纳米颗粒 苯酚 纳米技术 化学 光学 有机化学 生物化学 基因 物理
作者
Chao Sun,Naiyu Guo,Li Ye,Longxin Miao,Mian Cao,Mingdie Yan,Jianjun Ding
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:296: 122663-122663 被引量:6
标识
DOI:10.1016/j.saa.2023.122663
摘要

Phenol red (PR) is generally used as an acid-base indicator and a printing and dyeing colorant. When its content exceeds a certain concentration in water, it will cause great damage to the human body. Therefore, it is very important to detect the content of PR in water. The advantage of surface enhanced Raman scattering (SERS) is detecting samples quickly, non-destructive and high sensitivity without sample pre-treatment. SERS has attracted great attention in all fields of detection and analysis. In this paper, the method of attaching silver nanoparticles to metallic single-walled carbon nanotubes form carbon nanotubes/silver nanoparticles (CNTs/AgNPs) structure and then combining it with silica sheet is proposed. SERS substrate with silica/carbon nanotubes/silver nanoparticles (SiO2/CNTs/AgNPs) composite structure has extremely high reinforcement effect. In the quantitative analysis of the detected substance, mathematical fitting or machine learning is used to find the relationship between the intensity of Raman signal and the concentration of the detected substance. The BP neural network optimized by genetic algorithm (GA-BP) is designed in this study. The weights of GA-BP to enhance the robustness of BP neural network, the method of adaptive learning rate and the number of hidden nodes is set to solve the problem that GA-BP is easy to fall into local optimum, thus establishing a quantitative analysis model of PR solution concentration. The model can detect different concentrations of PR solutions with high accuracy quickly, simply and sensitively. Finally, compared with other published quantitative models, GA-BP correlation coefficient R2 determined by the training results of the model is 0.99996, and the root mean square error of the prediction is RMSEP = 0.002510, which is 0.0005 higher than the mathematical fitting method, it shows better performance. A reliable idea for the preparation of SERS substrate and online detection of PR concentration in water proposed in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh2018687完成签到,获得积分10
1秒前
jianghs完成签到,获得积分10
6秒前
小苏发布了新的文献求助10
7秒前
8秒前
xinxinqi完成签到 ,获得积分10
8秒前
14秒前
吉祥高趙完成签到 ,获得积分10
14秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
17秒前
BHI完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
饱满的荧完成签到 ,获得积分10
20秒前
幸福妙柏完成签到 ,获得积分10
21秒前
梅特卡夫完成签到,获得积分10
22秒前
精明寒松完成签到 ,获得积分10
24秒前
33秒前
Allen完成签到,获得积分10
34秒前
laber应助科研通管家采纳,获得50
35秒前
正己化人应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
35秒前
strawberry完成签到,获得积分10
35秒前
小苏完成签到 ,获得积分10
36秒前
叁月二完成签到 ,获得积分10
36秒前
TH完成签到 ,获得积分10
37秒前
38秒前
笑笑完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
21_xxrr完成签到 ,获得积分10
44秒前
烂漫笑晴完成签到 ,获得积分10
45秒前
LiuZhaoYuan完成签到,获得积分10
46秒前
呵呵喊我完成签到 ,获得积分10
54秒前
健壮惋清完成签到 ,获得积分10
58秒前
清澈的爱只为中国完成签到 ,获得积分10
59秒前
曾继岚完成签到 ,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
韩麒嘉完成签到 ,获得积分10
1分钟前
tao发布了新的文献求助10
1分钟前
jjl完成签到 ,获得积分10
1分钟前
怎么办完成签到 ,获得积分10
1分钟前
bajiu完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067