DeepFittingNet: A deep neural network‐based approach for simplifying cardiac T1 and T2 estimation with improved robustness

稳健性(进化) 成像体模 人工神经网络 计算机科学 人工智能 算法 模式识别(心理学) 数学 核医学 医学 生物 基因 生物化学
作者
Rui Guo,Dongyue Si,Yingwei Fan,Xiaofeng Qian,Haina Zhang,Haiyan Ding,Xiaoying Tang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:90 (5): 1979-1989 被引量:4
标识
DOI:10.1002/mrm.29782
摘要

Abstract Purpose To develop and evaluate a deep neural network (DeepFittingNet) for T 1 /T 2 estimation of the most commonly used cardiovascular MR mapping sequences to simplify data processing and improve robustness. Theory and Methods DeepFittingNet is a 1D neural network composed of a recurrent neural network (RNN) and a fully connected (FCNN) neural network, in which RNN adapts to the different number of input signals from various sequences and FCNN subsequently predicts A, B, and T x of a three‐parameter model. DeepFittingNet was trained using Bloch‐equation simulations of MOLLI and saturation‐recovery single‐shot acquisition (SASHA) T 1 mapping sequences, and T 2 ‐prepared balanced SSFP (T 2 ‐prep bSSFP) T 2 mapping sequence, with reference values from the curve‐fitting method. Several imaging confounders were simulated to improve robustness. The trained DeepFittingNet was tested using phantom and in‐vivo signals, and compared to the curve‐fitting algorithm. Results In testing, DeepFittingNet performed T 1 /T 2 estimation of four sequences with improved robustness in inversion‐recovery T 1 estimation. The mean bias in phantom T 1 and T 2 between the curve‐fitting and DeepFittingNet was smaller than 30 and 1 ms, respectively. Excellent agreements between both methods was found in the left ventricle and septum T 1 /T 2 with a mean bias <6 ms. There was no significant difference in the SD of both the left ventricle and septum T 1 /T 2 between the two methods. Conclusion DeepFittingNet trained with simulations of MOLLI, SASHA, and T 2 ‐prep bSSFP performed T 1 /T 2 estimation tasks for all these most used sequences. Compared with the curve‐fitting algorithm, DeepFittingNet improved the robustness for inversion‐recovery T 1 estimation and had comparable performance in terms of accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尉迟希望完成签到,获得积分10
刚刚
SciEngineerX完成签到,获得积分10
刚刚
ppat5012完成签到,获得积分10
刚刚
布布完成签到,获得积分10
刚刚
桑榆非晚完成签到,获得积分10
刚刚
ldx完成签到,获得积分10
刚刚
huhuan完成签到,获得积分10
1秒前
夏则完成签到,获得积分10
1秒前
清欢完成签到,获得积分10
1秒前
wuda完成签到,获得积分10
1秒前
星流xx完成签到 ,获得积分10
2秒前
Mae完成签到 ,获得积分10
2秒前
bigpluto完成签到,获得积分0
2秒前
月月小光完成签到,获得积分10
2秒前
内向的青荷完成签到,获得积分10
3秒前
沉默问夏完成签到 ,获得积分10
3秒前
安安完成签到 ,获得积分10
4秒前
星掠完成签到,获得积分10
4秒前
5秒前
小石头完成签到,获得积分10
5秒前
姜小时完成签到,获得积分10
5秒前
bbabb完成签到 ,获得积分10
6秒前
椿萱并茂完成签到,获得积分10
6秒前
yyyy完成签到,获得积分10
7秒前
比亚迪士尼在逃公主完成签到,获得积分10
7秒前
星星会开花完成签到,获得积分10
8秒前
Wenyu完成签到,获得积分10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
Dr_JennyZ应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118440
求助须知:如何正确求助?哪些是违规求助? 4324348
关于积分的说明 13471847
捐赠科研通 4157359
什么是DOI,文献DOI怎么找? 2278392
邀请新用户注册赠送积分活动 1280168
关于科研通互助平台的介绍 1218879