光电子学
材料科学
等离子体子
带宽(计算)
光调制器
光通信
多路复用
光学
计算机科学
相位调制
电信
物理
相位噪声
作者
Marco Eppenberger,Andreas Messner,Bertold Ian Bitachon,Wolfgang Heni,Tobias Blatter,Patrick Habegger,Marcel Destraz,Eva De Leo,Norbert Meier,Nino Del Medico,Claudia Hoessbacher,Benedikt Baeuerle,J. Leuthold
出处
期刊:Nature Photonics
[Nature Portfolio]
日期:2023-03-02
卷期号:17 (4): 360-367
被引量:45
标识
DOI:10.1038/s41566-023-01161-9
摘要
Abstract Resonant modulators encode electrical data onto wavelength-multiplexed optical carriers. Today, silicon microring modulators are perceived as promising to implement such links; however, they provide limited bandwidth and need thermal stabilization systems. Here we present plasmonic micro-racetrack modulators as a potential successor of silicon microrings: they are equally compact and compatible with complementary-metal–oxide–semiconductor-level driving voltages, but offer electro-optical bandwidths of 176 GHz, a 28 times improved stability against operating temperature changes and no self-heating effects. The temperature-resistant organic electro-optic material enables operation at 85 °C device temperature. We show intensity-modulated transmission of up to 408 Gbps at 12.3 femtojoules per bit with a single resonant modulator. Plasmonic micro-racetrack modulators offer a solution to encode high data rates (for example, the 1.6 Tbps envisioned by next-generation communications links) at a small footprint, with low power consumption and marginal, if no, temperature control.
科研通智能强力驱动
Strongly Powered by AbleSci AI