数学
下降方向
最优化中的牛顿法
数学优化
近端梯度法
行搜索
趋同(经济学)
梯度法
先验与后验
梯度下降
牛顿法
功能(生物学)
序列(生物学)
非线性系统
拟牛顿法
二次方程
凸函数
局部收敛
正多边形
迭代法
计算机科学
人工神经网络
经济
半径
进化生物学
机器学习
认识论
遗传学
经济增长
计算机安全
哲学
物理
量子力学
几何学
生物
作者
Md Abu Talhamainuddin Ansary
标识
DOI:10.1080/10556788.2022.2157000
摘要
In this paper, a globally convergent Newton-type proximal gradient method is developed for composite multi-objective optimization problems where each objective function can be represented as the sum of a smooth function and a nonsmooth function. The proposed method deals with unconstrained convex multi-objective optimization problems. This method is free from any kind of priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a suitable descent direction. The subproblem uses a quadratic approximation of each smooth function. An Armijo type line search is conducted to find a suitable step length. A sequence is generated using the descent direction and the step length. The global convergence of this method is justified under some mild assumptions. The proposed method is verified and compared with some existing methods using a set of test problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI