A Multi-Modal Heterogeneous Graph Forest to Predict Lymph Node Metastasis of Non-Small Cell Lung Cancer

计算机科学 深度学习 情态动词 图形 人工智能 图形数据库 模式识别(心理学) 机器学习 理论计算机科学 化学 高分子化学
作者
Danqing Hu,Shaolei Li,Nan Wu,Xudong Lü
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1216-1224 被引量:9
标识
DOI:10.1109/jbhi.2022.3233387
摘要

Lymph node metastasis (LNM) is critical for treatment decision-making for cancer patients, but it is difficult to diagnose accurately before surgery. Machine learning can learn nontrivial knowledge from multi-modal data to support accurate diagnosis. In this paper, we proposed a Multi-modal Heterogeneous Graph Forest (MHGF) approach to extract the deep representations of LNM from multi-modal data. Specifically, we first extracted the deep image features from CT images to represent the pathological anatomic extent of the primary tumor (pathological T stage) using a ResNet-Trans network. And then, a heterogeneous graph with six vertices and seven bi-directional relations was defined by medical experts to describe the possible relations between the clinical and image features. After that, we proposed a graph forest approach to construct the sub-graphs by removing each vertex in the complete graph iteratively. Finally, we used graph neural networks to learn the representations of each sub-graph in the forest to predict LNM and averaged all the prediction results as final results. We conducted experiments on 681 patients' multi-modal data. The proposed MHGF achieves the best performances with a 0.806 AUC value and 0.513 AP value compared with state-of-art machine learning and deep learning methods. The results indicate that the graph method can explore the relations between different types of features to learn effective deep representations for LNM prediction. Moreover, we found that the deep image features about the pathological anatomic extent of the primary tumor are useful for LNM prediction. And the graph forest approach can further improve the generalization ability and stability of the LNM prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy998发布了新的文献求助10
1秒前
2秒前
初识发布了新的文献求助10
4秒前
gs发布了新的文献求助10
6秒前
8秒前
所所应助Daddybo采纳,获得10
10秒前
科研通AI2S应助郭慧泉采纳,获得10
10秒前
豆泡终结者完成签到 ,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
12秒前
Miranda发布了新的文献求助10
13秒前
谨慎秋珊完成签到 ,获得积分10
13秒前
14秒前
15秒前
jenningseastera应助Raymond采纳,获得10
15秒前
海洋完成签到,获得积分10
17秒前
牙牙完成签到,获得积分10
20秒前
烟花应助buerxiaoshen采纳,获得10
20秒前
23秒前
求解限发布了新的文献求助50
24秒前
脑洞疼应助牙牙采纳,获得10
24秒前
ray发布了新的文献求助10
27秒前
SPQR完成签到,获得积分10
27秒前
30秒前
包容的海豚完成签到 ,获得积分10
31秒前
Typing发布了新的文献求助10
31秒前
SciGPT应助Miranda采纳,获得10
33秒前
慕青应助tffyhgfjhy采纳,获得10
34秒前
王南晰完成签到 ,获得积分10
34秒前
keke完成签到,获得积分10
35秒前
buerxiaoshen发布了新的文献求助10
35秒前
初识完成签到,获得积分10
37秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401