Mechanisms of Enhanced Electrochemical Performance by Chemical Short-Range Disorder in Lithium Oxide Cathodes

电化学 锂(药物) 材料科学 阴极 氧化物 纳米技术 无机化学 化学 电极 物理化学 冶金 医学 内分泌学
作者
Zichang Zhang,Peng‐Hu Du,Jiahui Liu,Dingguo Xia,Qiang Sun
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c17907
摘要

LiCoO2 has been one of the dominant cathode materials commercially used in rechargeable lithium-ion batteries, while the performance is severely limited by its low reversible capacity (∼140 mAh/g), primarily due to the destructive phase transitions at high voltages (>4.2 V vs Li/Li+), leading to structural degradation and rapid decay of capacity. A recent experimental study [Wang et al. Nature 2024, 629, 341] showed that chemical short-range disorder (CSRD) in LiCoO2 can effectively prevent phase transitions and structural deterioration. To better understand the underlying mechanisms, we carry out a theoretical study on CSRD-based LiCoO2 by performing ab initio molecular dynamics simulations accelerated by machine learning and find that CSRD effectively suppresses phase transitions from hexagonal to monoclinic at Li0.5CoO2 and from O3 to H1–3 at Li0.25CoO2. The enhanced phase stability is attributed to the reduced lattice variation in the c-axis, the increased oxygen vacancy formation energies, the higher oxygen dimer formation energies, and the stabilization of Co atoms in the Li layers during delithiation. The high Li+ diffusion coefficients are found to arise from the low-barrier 0-TM diffusion channels and an expanded diffusion network from 2D to quasi-3D induced by CSRD. Furthermore, CSRD narrows the band gap of LiCoO2 with enhanced electronic conductivity, driven by the changes in the Co valence state and the introduction of linear Li–O–Li configurations. Equally important, CSRD can also enhance the stability of Li-rich cathode Li1.2Co0.8O2 for high capacity and excellent cycling performance. This work provides theoretical insights into the effects of CSRD on LiCoO2 and Li-rich cathodes for rational design and synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李大宝完成签到,获得积分20
刚刚
小李完成签到,获得积分10
1秒前
2秒前
科研通AI5应助英俊白莲采纳,获得10
2秒前
3秒前
慕青应助曾无忧采纳,获得10
4秒前
Meleo完成签到 ,获得积分20
5秒前
吾皇完成签到 ,获得积分10
7秒前
8秒前
深空发布了新的文献求助10
8秒前
9秒前
Kia发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
hukun100完成签到,获得积分10
11秒前
lant0932应助幸福大白采纳,获得10
11秒前
Lin发布了新的文献求助10
14秒前
渣渣凡完成签到,获得积分10
14秒前
宓之云发布了新的文献求助10
15秒前
科研通AI5应助ZJF采纳,获得30
16秒前
Jasper应助ash采纳,获得30
16秒前
纪贝贝完成签到,获得积分10
16秒前
酷波er应助吴子冰采纳,获得10
17秒前
微笑笑卉发布了新的文献求助30
18秒前
lu完成签到,获得积分20
18秒前
搜集达人应助科研通管家采纳,获得10
19秒前
MchemG应助科研通管家采纳,获得20
19秒前
田様应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
AURORA丶完成签到 ,获得积分10
21秒前
诚心的信封完成签到,获得积分10
22秒前
高震博完成签到 ,获得积分10
24秒前
25秒前
zhsy完成签到,获得积分10
25秒前
Kia完成签到,获得积分20
26秒前
26秒前
帮我带个饭完成签到 ,获得积分10
26秒前
彩云追月完成签到 ,获得积分10
27秒前
尊敬灵萱发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866325
求助须知:如何正确求助?哪些是违规求助? 3408859
关于积分的说明 10660381
捐赠科研通 3132992
什么是DOI,文献DOI怎么找? 1727921
邀请新用户注册赠送积分活动 832574
科研通“疑难数据库(出版商)”最低求助积分说明 780316