External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 微生物学 生物 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着傲柏完成签到,获得积分10
刚刚
dracovu发布了新的文献求助10
刚刚
霉霉完成签到 ,获得积分10
1秒前
1秒前
vina发布了新的文献求助10
1秒前
Ada发布了新的文献求助10
2秒前
2秒前
田様应助研友_LwbYv8采纳,获得10
2秒前
彭于彦祖应助牛乘风采纳,获得30
2秒前
阿信必发JACS完成签到,获得积分10
2秒前
Lucas应助努力学习的小鹏采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
3秒前
huihui完成签到,获得积分10
3秒前
隐形曼青应助请问采纳,获得10
3秒前
ll完成签到,获得积分20
4秒前
鳗鱼灵寒完成签到,获得积分10
5秒前
5秒前
善学以致用应助畅快山兰采纳,获得10
5秒前
5秒前
CipherSage应助昏睡的蟠桃采纳,获得10
6秒前
6秒前
舒心的雪卉完成签到,获得积分20
6秒前
7秒前
7秒前
PONY完成签到,获得积分10
7秒前
Akim应助AAAAA采纳,获得10
7秒前
Eliauk发布了新的文献求助10
8秒前
Poraris完成签到,获得积分10
8秒前
dracovu完成签到,获得积分10
10秒前
10秒前
Awei发布了新的文献求助10
11秒前
周星星完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
钱钱钱发布了新的文献求助10
13秒前
13秒前
沉默的发夹完成签到 ,获得积分10
13秒前
眼睛大雨筠应助你你你采纳,获得30
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925999
求助须知:如何正确求助?哪些是违规求助? 3470600
关于积分的说明 10964321
捐赠科研通 3200338
什么是DOI,文献DOI怎么找? 1768265
邀请新用户注册赠送积分活动 857352
科研通“疑难数据库(出版商)”最低求助积分说明 796016