External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 微生物学 生物 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
s1ght发布了新的文献求助10
9秒前
mendicant完成签到,获得积分10
9秒前
Hello应助文献搬运工采纳,获得10
10秒前
11秒前
科研通AI5应助Sunday采纳,获得30
14秒前
YuanLeiZhang完成签到,获得积分10
15秒前
He完成签到,获得积分10
15秒前
pluto应助indigo采纳,获得10
23秒前
唯一完成签到 ,获得积分10
24秒前
山水之乐发布了新的文献求助10
27秒前
27秒前
Misea发布了新的文献求助10
32秒前
共享精神应助zhouleiwang采纳,获得10
32秒前
35秒前
仙女完成签到 ,获得积分10
35秒前
35秒前
田様应助英俊萧采纳,获得10
36秒前
zhaoli完成签到 ,获得积分10
38秒前
GeneYang完成签到 ,获得积分10
38秒前
快乐的小央完成签到,获得积分10
40秒前
淡然灯泡发布了新的文献求助10
40秒前
EthanChan完成签到,获得积分10
41秒前
李健应助Misea采纳,获得10
42秒前
42秒前
Zero完成签到,获得积分10
43秒前
44秒前
44秒前
45秒前
苏州小北完成签到,获得积分10
46秒前
乐观井发布了新的文献求助10
47秒前
蓝兰完成签到,获得积分10
49秒前
Sunday发布了新的文献求助30
49秒前
星辰大海应助QDU采纳,获得10
56秒前
GRATE完成签到 ,获得积分10
59秒前
淡然灯泡完成签到,获得积分20
1分钟前
山山完成签到 ,获得积分10
1分钟前
科研人完成签到,获得积分10
1分钟前
purplelove完成签到 ,获得积分10
1分钟前
恐怖稽器人完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779725
求助须知:如何正确求助?哪些是违规求助? 3325161
关于积分的说明 10221707
捐赠科研通 3040293
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535