亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 微生物学 生物 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
被引量:1
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
艾米发布了新的文献求助10
7秒前
喜悦向日葵完成签到 ,获得积分10
9秒前
16秒前
彩虹儿应助艾米采纳,获得10
20秒前
彩虹儿应助艾米采纳,获得10
20秒前
43秒前
笨笨山芙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
可爱的函函应助长情铭采纳,获得20
1分钟前
彩虹儿应助科研通管家采纳,获得10
1分钟前
会飞的鱼发布了新的文献求助30
1分钟前
2分钟前
3分钟前
会飞的鱼发布了新的文献求助10
3分钟前
juan完成签到 ,获得积分10
3分钟前
老石完成签到 ,获得积分10
3分钟前
Microbiota完成签到,获得积分10
3分钟前
会飞的鱼完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
长情铭发布了新的文献求助20
3分钟前
4分钟前
炸薯条发布了新的文献求助10
4分钟前
朱佳宁完成签到 ,获得积分10
4分钟前
5分钟前
彩虹儿应助科研通管家采纳,获得10
5分钟前
6分钟前
优秀的流沙完成签到,获得积分10
7分钟前
8分钟前
9分钟前
北侨发布了新的文献求助10
9分钟前
丘比特应助北侨采纳,获得10
9分钟前
9分钟前
YooM发布了新的文献求助10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI5应助阿不卡巴采纳,获得10
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4178230
求助须知:如何正确求助?哪些是违规求助? 3713576
关于积分的说明 11708157
捐赠科研通 3395208
什么是DOI,文献DOI怎么找? 1862761
邀请新用户注册赠送积分活动 921448
科研通“疑难数据库(出版商)”最低求助积分说明 833184