Vibration-Based Anomaly Detection in Industrial Machines: A Comparison of Autoencoders and Latent Spaces

异常检测 异常(物理) 人工智能 计算机科学 模式识别(心理学) 物理 凝聚态物理
作者
Luca Radicioni,Francesco Morgan Bono,Simone Cinquemani
出处
期刊:Machines [MDPI AG]
卷期号:13 (2): 139-139 被引量:15
标识
DOI:10.3390/machines13020139
摘要

In industrial settings, machinery components inevitably wear and degrade due to friction between moving parts. To address this, various maintenance strategies, including corrective, preventive, and predictive maintenance, are commonly employed. This paper focuses on predictive maintenance through vibration analysis, utilizing data-driven models. This study explores the application of unsupervised learning methods, particularly Convolutional Autoencoders (CAEs) and variational Autoencoders (VAEs), for anomaly detection (AD) in vibration signals. By transforming vibration signals into images using the Synchrosqueezing Transform (SST), this research leverages the strengths of convolutional neural networks (CNNs) in image processing, which have proven effective in AD, especially at the pixel level. The methodology involves training CAEs and VAEs on data from machinery in healthy condition and testing them on new data samples representing different levels of system degradation. The results indicate that models with spatial latent spaces outperform those with dense latent spaces in terms of reconstruction accuracy and AD capabilities. However, VAEs did not yield satisfactory results, likely because reconstruction-based metrics are not entirely useful for AD purposes in such models. This study also highlights the potential of ReLU residuals in enhancing the visibility of anomalies. The data used in this study are openly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ChouChou发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助崔龙锋采纳,获得10
3秒前
Leon完成签到,获得积分10
3秒前
尘林完成签到,获得积分10
4秒前
xiaoyu发布了新的文献求助10
4秒前
yexia完成签到 ,获得积分10
4秒前
Jasper应助邓邓采纳,获得10
5秒前
君君完成签到,获得积分20
5秒前
李健应助落后满天采纳,获得10
6秒前
27发布了新的文献求助10
6秒前
8R60d8应助Eraseray采纳,获得10
7秒前
7秒前
12305014077完成签到,获得积分10
7秒前
8秒前
小二郎应助龙卷风采纳,获得10
10秒前
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
哈基米德应助科研通管家采纳,获得20
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
cuizhehao完成签到,获得积分10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
14秒前
王亚茹完成签到,获得积分10
14秒前
谢傲安发布了新的文献求助10
15秒前
搞怪孤丝完成签到 ,获得积分10
15秒前
生动映容发布了新的文献求助10
16秒前
寺9完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397179
求助须知:如何正确求助?哪些是违规求助? 4517412
关于积分的说明 14063874
捐赠科研通 4429328
什么是DOI,文献DOI怎么找? 2432273
邀请新用户注册赠送积分活动 1424816
关于科研通互助平台的介绍 1403865