Logistic-Grey-Markov prediction model

逻辑回归 马尔可夫链 计算机科学 人工智能 统计 机器学习 数学
作者
Lei Zhang,Ruijiang Li,Chen Jia
出处
期刊:Grey systems [Emerald Publishing Limited]
标识
DOI:10.1108/gs-07-2024-0087
摘要

Purpose In this study, a novel grey combined model, termed the logistic-Grey-Markov model, is proposed. This model aims to construct a relation function between transition probabilities and residual errors and fully utilize the information from residual errors to calculate optimal transition probabilities for more accurate predictions. Design/methodology/approach To address this issue, the logistic function is introduced and improved to accommodate different types of samples. Then the improved logistic function is applied to construct a relation function between transition probabilities and sample residual errors. Additionally, to obtain the optimal coefficients in the relation function, a least square objective function is constructed, and the Levenberg–Marquardt algorithm is employed. With these optimal coefficients, the relation function can fully utilize the information of residual errors and calculate the optimal transition probabilities. Findings The improved logistic function in the logistic-Grey-Markov model ensures that the information from sample residual errors is fully utilized and case studies demonstrate that the proposed logistic-Grey-Markov model can effectively improve the prediction accuracy. Originality/value One of the strengths of the Grey-Markov model is its ability to predict outcomes with small and highly volatile samples. However, the prediction accuracy is not ideal due to the information waste of residual errors, especially when only a small sample size is available. The proposed logistic-Grey-Markov model can fully utilize the information in residual errors to calculate the optimal transition probabilities and improve the accuracy of the Grey-Markov model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺发布了新的文献求助10
1秒前
Skywings完成签到,获得积分10
2秒前
先锋老刘001完成签到,获得积分10
10秒前
榆木小鸟完成签到 ,获得积分10
18秒前
肯德鸭完成签到,获得积分10
27秒前
wintersss完成签到,获得积分10
27秒前
笨笨忘幽完成签到,获得积分10
31秒前
飞云完成签到 ,获得积分10
32秒前
WRZ完成签到 ,获得积分10
32秒前
最棒哒完成签到 ,获得积分10
34秒前
大气的乌冬面完成签到,获得积分10
38秒前
41秒前
44秒前
Casey完成签到 ,获得积分10
48秒前
童白翠发布了新的文献求助10
50秒前
路路完成签到 ,获得积分10
51秒前
cmq完成签到 ,获得积分10
53秒前
CLTTT完成签到,获得积分10
1分钟前
彭于晏应助动听的千萍采纳,获得10
1分钟前
落寞思山关注了科研通微信公众号
1分钟前
搜集达人应助多边棱采纳,获得10
1分钟前
饱满的棒棒糖完成签到 ,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
橘子海完成签到 ,获得积分10
1分钟前
tion66完成签到 ,获得积分10
1分钟前
传奇3应助童白翠采纳,获得10
1分钟前
CNAxiaozhu7完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
xu完成签到 ,获得积分10
2分钟前
lilylwy完成签到 ,获得积分0
2分钟前
雪流星完成签到 ,获得积分10
2分钟前
空的境界完成签到 ,获得积分10
2分钟前
小新完成签到 ,获得积分10
2分钟前
枫威完成签到 ,获得积分10
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
AJ完成签到 ,获得积分10
2分钟前
ZJZALLEN完成签到 ,获得积分10
2分钟前
2分钟前
ycd完成签到,获得积分10
2分钟前
务实鞅完成签到 ,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353