Unsupervised Domain Adaptation Augmented by Mutually Boosted Attention for Semantic Segmentation of VHR Remote Sensing Images

计算机科学 判别式 卷积神经网络 分割 鉴别器 人工智能 特征(语言学) 领域(数学分析) 模式识别(心理学) 特征学习 域适应 分类器(UML) 探测器 电信 数学分析 哲学 语言学 数学
作者
Xianping Ma,Xiaokang Zhang,Zhiguo Wang,Man-On Pun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:26
标识
DOI:10.1109/tgrs.2023.3240982
摘要

This work investigates unsupervised domain adaptation (UDA)-based semantic segmentation of very high-resolution (VHR) remote sensing (RS) images from different domains. Most existing UDA methods resort to generative adversarial networks (GANs) to cope with the domain shift problem caused by the discrepancies across different domains. However, these GAN-based UDA methods directly align two domains in the appearance, latent, or output space based on convolutional neural networks (CNNs), making them ineffective in exploiting long-range dependencies across the high-level feature maps derived from different domains. Unfortunately, such high-level features play an essential role in characterizing RS images with complex content. To circumvent this obstacle, a mutually boosted attention transformer (MBATrans) is proposed to capture cross-domain dependencies of semantic feature representations in this work. Compared with conventional UDA methods, MBATrans can significantly reduce domain discrepancies by capturing transferable features using global attention. More specifically, MBATrans utilizes a novel mutually boosted attention (MBA) module to align cross-domain feature maps while enhancing domain-general features. Furthermore, a novel GAN-based network with improved discriminative capability is devised by integrating an additional discriminator to learn domain-specific features. Extensive experiments on two large-scale VHR RS datasets, namely, International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and Vaihingen, confirm the superior performance of the proposed MBATrans-augmented GAN (MBATA-GAN) architecture. The source code in this work is available at https://github.com/sstary/SSRS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengbeing完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
朝伟呵发布了新的文献求助10
4秒前
SciGPT应助研友_5Zl9D8采纳,获得10
5秒前
7秒前
杜兰特工队完成签到,获得积分10
8秒前
大胆剑封发布了新的文献求助10
9秒前
笑点低的飞扬完成签到 ,获得积分10
9秒前
月月发布了新的文献求助10
9秒前
鱼鱼发布了新的文献求助10
9秒前
yingying发布了新的文献求助20
10秒前
12秒前
西米露完成签到 ,获得积分10
12秒前
13秒前
14秒前
乐观的雨应助lam采纳,获得10
15秒前
粗心小熊猫完成签到,获得积分10
15秒前
CodeCraft应助午夜煎饼采纳,获得10
15秒前
王提发布了新的文献求助10
16秒前
zhouxw27完成签到,获得积分10
17秒前
哆啦A梦完成签到,获得积分10
19秒前
bkagyin应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
大胆剑封完成签到,获得积分10
21秒前
24秒前
24秒前
晨光完成签到 ,获得积分10
26秒前
HongJiang发布了新的文献求助10
26秒前
852应助LHL采纳,获得10
26秒前
研友_5Zl9D8发布了新的文献求助10
27秒前
99完成签到,获得积分10
27秒前
QQT完成签到,获得积分10
27秒前
zho应助lam采纳,获得10
29秒前
30秒前
烛畔旧盟完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732