Optimal scheduling strategy for orderly charging and discharging of electric vehicles based on spatio-temporal characteristics

调度(生产过程) 计算机科学 电动汽车 汽车工程 运筹学 工程类 功率(物理) 运营管理 量子力学 物理
作者
Sheng‐Cheng Wu,Aiping Pang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:392: 136318-136318 被引量:27
标识
DOI:10.1016/j.jclepro.2023.136318
摘要

With the development of vehicle-to-grid (V2G) technology, the disorderly access of a large number of electric vehicles (EVs) will impact the operation of the power system. Considering the uncertainty of EVs charging/discharging load on the spatio-temporal scale, this paper proposes an optimal scheduling strategy for EVs with spatio-temporal characteristics. The strategy integrates EVs into the microgrid, constructs the spatio-temporal distribution models of charging load and describes the uncertainty of electric vehicle owners’ (EVOs) charging behaviours by fuzzy theory. Considering the bounded rationality of EVOs, this paper takes the charging/discharging price of EVs as the decision variable, and the dynamic time-of-use price mechanism is used to guide EVOs to make charging/discharging decisions. Then, with the objective function of minimising the comprehensive operating cost (COC) and the peak-valley load difference (PVLD), an orderly charging/discharging scheduling model for EVs is established and the optimal scheduling strategy is given. Furthermore, the three scheduling scenarios are set up in the case study, and the maximum number of EVs to participate in scheduling is determined to be 4000. The numerical results show that the proposed scheduling strategy reduces the COC and PVLD by 17.96% and 5.21%, respectively, compared with the disorderly scheduling, and reduces the COC and PVLD by 13.35% and 5.21%, respectively, compared with the orderly scheduling without V2G, which verifies the effectiveness and superiority of the proposed scheduling strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助发发发paper采纳,获得10
1秒前
1秒前
Jasper应助烤面包的小狗采纳,获得10
1秒前
大个应助sirhai采纳,获得10
3秒前
健壮的依丝完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
如梦发布了新的文献求助10
5秒前
5秒前
芋泥完成签到,获得积分20
5秒前
莫西莫西发布了新的文献求助10
6秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
隐形曼青应助fqf采纳,获得10
13秒前
莫西莫西完成签到,获得积分10
13秒前
六六发布了新的文献求助10
15秒前
coolkid应助xiong xiong采纳,获得20
17秒前
Kikua发布了新的文献求助10
17秒前
SYLH应助子暮采纳,获得20
19秒前
喵喵大王完成签到,获得积分10
21秒前
清爽的乐曲完成签到,获得积分10
21秒前
21秒前
六六完成签到,获得积分10
22秒前
23秒前
光亮芷天完成签到,获得积分10
23秒前
传奇3应助武雨寒采纳,获得10
25秒前
shy完成签到,获得积分10
30秒前
yimoyafan发布了新的文献求助30
30秒前
哈哈哈完成签到 ,获得积分10
31秒前
32秒前
如梦完成签到,获得积分10
33秒前
lilacs发布了新的文献求助10
34秒前
海燕发布了新的文献求助10
34秒前
梦追阳完成签到 ,获得积分10
35秒前
35秒前
飘逸访文完成签到,获得积分10
37秒前
HandsomeShaw完成签到,获得积分10
38秒前
39秒前
kejiyn完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867299
求助须知:如何正确求助?哪些是违规求助? 3409557
关于积分的说明 10664322
捐赠科研通 3133824
什么是DOI,文献DOI怎么找? 1728495
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517