清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room

计算机科学 国家(计算机科学) 医疗急救 自然语言处理 人工智能 医学 程序设计语言
作者
Benjamin S. Glicksberg,Prem Timsina,Dhaval Patel,Ashwin Sawant,Akhil Vaid,Ganesh Raut,Alexander W. Charney,Donald U. Apakama,Brendan G. Carr,Robert Freeman,Girish N. Nadkarni,Eyal Klang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 1921-1928 被引量:27
标识
DOI:10.1093/jamia/ocae103
摘要

Abstract Background Artificial intelligence (AI) and large language models (LLMs) can play a critical role in emergency room operations by augmenting decision-making about patient admission. However, there are no studies for LLMs using real-world data and scenarios, in comparison to and being informed by traditional supervised machine learning (ML) models. We evaluated the performance of GPT-4 for predicting patient admissions from emergency department (ED) visits. We compared performance to traditional ML models both naively and when informed by few-shot examples and/or numerical probabilities. Methods We conducted a retrospective study using electronic health records across 7 NYC hospitals. We trained Bio-Clinical-BERT and XGBoost (XGB) models on unstructured and structured data, respectively, and created an ensemble model reflecting ML performance. We then assessed GPT-4 capabilities in many scenarios: through Zero-shot, Few-shot with and without retrieval-augmented generation (RAG), and with and without ML numerical probabilities. Results The Ensemble ML model achieved an area under the receiver operating characteristic curve (AUC) of 0.88, an area under the precision-recall curve (AUPRC) of 0.72 and an accuracy of 82.9%. The naïve GPT-4's performance (0.79 AUC, 0.48 AUPRC, and 77.5% accuracy) showed substantial improvement when given limited, relevant data to learn from (ie, RAG) and underlying ML probabilities (0.87 AUC, 0.71 AUPRC, and 83.1% accuracy). Interestingly, RAG alone boosted performance to near peak levels (0.82 AUC, 0.56 AUPRC, and 81.3% accuracy). Conclusions The naïve LLM had limited performance but showed significant improvement in predicting ED admissions when supplemented with real-world examples to learn from, particularly through RAG, and/or numerical probabilities from traditional ML models. Its peak performance, although slightly lower than the pure ML model, is noteworthy given its potential for providing reasoning behind predictions. Further refinement of LLMs with real-world data is necessary for successful integration as decision-support tools in care settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂炒饼完成签到 ,获得积分10
28秒前
55秒前
peng发布了新的文献求助10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
李健的小迷弟应助peng采纳,获得10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
tingyeh完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ivyjianjie完成签到,获得积分10
1分钟前
1分钟前
ivyjianjie发布了新的文献求助10
1分钟前
nojego完成签到,获得积分10
2分钟前
2分钟前
wangjianfeng发布了新的文献求助10
2分钟前
3分钟前
Sunny完成签到,获得积分10
3分钟前
搜集达人应助haralee采纳,获得10
4分钟前
4分钟前
肆陆发布了新的文献求助10
4分钟前
1121完成签到 ,获得积分10
4分钟前
yyds完成签到,获得积分10
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
wangjianfeng完成签到,获得积分10
5分钟前
英姑应助wangjianfeng采纳,获得10
5分钟前
webmaster完成签到,获得积分10
5分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
juan完成签到 ,获得积分10
5分钟前
宇文非笑完成签到 ,获得积分0
6分钟前
7分钟前
古人发布了新的文献求助30
7分钟前
科研通AI5应助古人采纳,获得10
7分钟前
古人完成签到,获得积分10
7分钟前
汉堡包应助jyy采纳,获得10
7分钟前
8分钟前
jyy发布了新的文献求助10
8分钟前
8分钟前
9分钟前
自律发布了新的文献求助10
9分钟前
自律完成签到,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788291
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263216
捐赠科研通 3049592
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802100
科研通“疑难数据库(出版商)”最低求助积分说明 760511