Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room

计算机科学 国家(计算机科学) 医疗急救 自然语言处理 人工智能 医学 程序设计语言
作者
Benjamin S. Glicksberg,Prem Timsina,Dhaval Patel,Ashwin Sawant,Akhil Vaid,Ganesh Raut,Alexander W. Charney,Donald U. Apakama,Brendan G. Carr,Robert Freeman,Girish N. Nadkarni,Eyal Klang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 1921-1928 被引量:67
标识
DOI:10.1093/jamia/ocae103
摘要

Abstract Background Artificial intelligence (AI) and large language models (LLMs) can play a critical role in emergency room operations by augmenting decision-making about patient admission. However, there are no studies for LLMs using real-world data and scenarios, in comparison to and being informed by traditional supervised machine learning (ML) models. We evaluated the performance of GPT-4 for predicting patient admissions from emergency department (ED) visits. We compared performance to traditional ML models both naively and when informed by few-shot examples and/or numerical probabilities. Methods We conducted a retrospective study using electronic health records across 7 NYC hospitals. We trained Bio-Clinical-BERT and XGBoost (XGB) models on unstructured and structured data, respectively, and created an ensemble model reflecting ML performance. We then assessed GPT-4 capabilities in many scenarios: through Zero-shot, Few-shot with and without retrieval-augmented generation (RAG), and with and without ML numerical probabilities. Results The Ensemble ML model achieved an area under the receiver operating characteristic curve (AUC) of 0.88, an area under the precision-recall curve (AUPRC) of 0.72 and an accuracy of 82.9%. The naïve GPT-4's performance (0.79 AUC, 0.48 AUPRC, and 77.5% accuracy) showed substantial improvement when given limited, relevant data to learn from (ie, RAG) and underlying ML probabilities (0.87 AUC, 0.71 AUPRC, and 83.1% accuracy). Interestingly, RAG alone boosted performance to near peak levels (0.82 AUC, 0.56 AUPRC, and 81.3% accuracy). Conclusions The naïve LLM had limited performance but showed significant improvement in predicting ED admissions when supplemented with real-world examples to learn from, particularly through RAG, and/or numerical probabilities from traditional ML models. Its peak performance, although slightly lower than the pure ML model, is noteworthy given its potential for providing reasoning behind predictions. Further refinement of LLMs with real-world data is necessary for successful integration as decision-support tools in care settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2464259931完成签到,获得积分10
2秒前
3秒前
领导范儿应助Scar采纳,获得10
4秒前
4秒前
4秒前
qaplay完成签到 ,获得积分0
5秒前
6秒前
激昂的逊发布了新的文献求助10
6秒前
完美世界应助萱萱采纳,获得10
6秒前
朝朝完成签到,获得积分10
6秒前
虚幻水杯完成签到,获得积分20
6秒前
7秒前
路寻发布了新的文献求助10
7秒前
积极行天完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
善学以致用应助泽锦臻采纳,获得10
8秒前
爹爹发布了新的文献求助10
8秒前
8秒前
张璋发布了新的文献求助10
8秒前
8秒前
传动比uo发布了新的文献求助10
9秒前
xu发布了新的文献求助10
9秒前
浮游应助式微采纳,获得10
9秒前
9秒前
函数完成签到 ,获得积分10
9秒前
归尘应助上帝的宠儿采纳,获得10
9秒前
科目三应助追风少年采纳,获得10
9秒前
9秒前
10秒前
wo_qq111完成签到,获得积分10
10秒前
11秒前
FashionBoy应助积极访梦采纳,获得10
11秒前
蒲公英完成签到,获得积分10
11秒前
12秒前
史萌完成签到,获得积分10
12秒前
小银应助番茄Z采纳,获得10
12秒前
yao发布了新的文献求助10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451784
求助须知:如何正确求助?哪些是违规求助? 4559632
关于积分的说明 14274052
捐赠科研通 4483642
什么是DOI,文献DOI怎么找? 2455593
邀请新用户注册赠送积分活动 1446479
关于科研通互助平台的介绍 1422340