Validation and Feasibility of Ultrafast Cervical Spine MRI Using a Deep Learning-Assisted 3D Iterative Image Enhancement System

深度学习 计算机科学 人工智能 颈椎 脊柱(分子生物学) 图像(数学) 图像增强 生物医学工程 机器学习 计算机视觉 模式识别(心理学) 医学物理学 医学 生物信息学 生物 外科
作者
Hui Yao,Bangsheng Jia,Xuelin Pan,Jiayu Sun
出处
期刊:Journal of multidisciplinary healthcare [Dove Medical Press]
卷期号:Volume 17: 2499-2509
标识
DOI:10.2147/jmdh.s465002
摘要

Purpose: This study aimed to evaluate the feasibility of ultrafast (2 min) cervical spine MRI protocol using a deep learning-assisted 3D iterative image enhancement (DL-3DIIE) system, compared to a conventional MRI protocol (6 min 14s). Patients and Methods: Fifty-one patients were recruited and underwent cervical spine MRI using conventional and ultrafast protocols. A DL-3DIIE system was applied to the ultrafast protocol to compensate for the spatial resolution and signal-to-noise ratio (SNR) of images. Two radiologists independently assessed and graded the quality of images from the dimensions of artifacts, boundary sharpness, visibility of lesions and overall image quality. We recorded the presence or absence of different pathologies. Moreover, we examined the interchangeability of the two protocols by computing the 95% confidence interval of the individual equivalence index, and also evaluated the inter-protocol intra-observer agreement using Cohen's weighted kappa. Results: Ultrafast-DL-3DIIE images were significantly better than conventional ones for artifacts and equivalent for other qualitative features. The number of cases with different kinds of pathologies was indistinguishable based on the MR images from ultrafast-DL-3DIIE and conventional protocols. With the exception of disc degeneration, the 95% confidence interval for the individual equivalence index across all variables did not surpass 5%, suggesting that the two protocols are interchangeable. The kappa values of these evaluations by the two radiologists ranged from 0.65 to 0.88, indicating good-to-excellent agreement. Conclusion: The DL-3DIIE system enables 67% spine MRI scan time reduction while obtaining at least equivalent image quality and diagnostic results compared to the conventional protocol, suggesting its potential for clinical utility. Keywords: cervical spine, magnetic resonance imaging, fast imaging, deep learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张乐由完成签到,获得积分10
刚刚
孝顺的猕猴桃完成签到,获得积分10
刚刚
婉妤发布了新的文献求助10
刚刚
请输入昵称完成签到,获得积分10
1秒前
Khalil完成签到 ,获得积分10
1秒前
qiaokelidawang完成签到,获得积分10
1秒前
喜多米430完成签到,获得积分10
2秒前
啊啊啊啊关注了科研通微信公众号
2秒前
2秒前
脑洞疼应助坛子采纳,获得10
2秒前
3秒前
maggie发布了新的文献求助10
3秒前
JamesPei应助18岁的王教授采纳,获得10
4秒前
赘婿应助Ran采纳,获得10
4秒前
嘟嘟嘟发布了新的文献求助10
4秒前
养花低手完成签到 ,获得积分10
5秒前
斗罗大陆完成签到,获得积分10
5秒前
哈欠发布了新的文献求助50
6秒前
tsai发布了新的文献求助10
6秒前
云中子发布了新的文献求助10
6秒前
小小何发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Lucas应助勤奋菲音采纳,获得10
8秒前
昏睡的眼神完成签到 ,获得积分10
8秒前
孝顺的花卷完成签到,获得积分20
8秒前
小二郎应助微笑的语芙采纳,获得10
9秒前
9秒前
xide完成签到,获得积分10
9秒前
10秒前
在水一方应助嘟嘟嘟采纳,获得10
10秒前
伟@完成签到,获得积分10
12秒前
allyceacheng完成签到,获得积分10
12秒前
醉熏的伊完成签到,获得积分10
13秒前
13秒前
Ava应助小诗诗采纳,获得10
13秒前
科研通AI5应助风趣问蕊采纳,获得10
13秒前
Guoys发布了新的文献求助10
14秒前
深情安青应助jennica采纳,获得10
14秒前
杨然发布了新的文献求助10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152651
求助须知:如何正确求助?哪些是违规求助? 4348354
关于积分的说明 13539239
捐赠科研通 4190824
什么是DOI,文献DOI怎么找? 2298370
邀请新用户注册赠送积分活动 1298596
关于科研通互助平台的介绍 1243440