Wood-inspired anisotropic hydrogel electrolyte with large modulus and low tortuosity realizing durable dendrite-free zinc-ion batteries

枝晶(数学) 电解质 曲折 材料科学 各向异性 纳米技术 复合材料 化学 冶金 多孔性 电极 数学 物理 几何学 物理化学 量子力学
作者
Jizhang Chen,Minfeng Chen,Hongli Chen,Ming Yang,Xiang Han,Dingtao Ma,Peixin Zhang,Ching‐Ping Wong
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (21) 被引量:23
标识
DOI:10.1073/pnas.2322944121
摘要

While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO 2 battery with noteworthy volumetric energy density is realized. This study offers unique perspectives for designing hydrogel electrolytes and augmenting battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连忘幽完成签到 ,获得积分10
1秒前
和谐的万宝路完成签到,获得积分10
1秒前
方方发布了新的文献求助10
1秒前
1秒前
文静完成签到 ,获得积分10
1秒前
小小鱼完成签到,获得积分10
2秒前
斯文败类应助bsc采纳,获得10
3秒前
十一完成签到 ,获得积分10
3秒前
nan完成签到,获得积分10
3秒前
天天快乐应助月浅采纳,获得10
4秒前
Cindy完成签到,获得积分10
4秒前
阿辽发布了新的文献求助10
4秒前
科研通AI2S应助天天向上采纳,获得10
5秒前
研友_Lpawrn完成签到,获得积分10
5秒前
chenchen完成签到,获得积分20
5秒前
Kiosta应助小费采纳,获得30
5秒前
烊烊坨完成签到,获得积分10
5秒前
科研通AI2S应助吖吖采纳,获得10
6秒前
1234354346完成签到,获得积分10
6秒前
6秒前
小刘完成签到,获得积分10
7秒前
lulu完成签到,获得积分10
7秒前
sobergod完成签到,获得积分10
7秒前
dyce完成签到,获得积分10
8秒前
10秒前
Shilly完成签到,获得积分10
10秒前
10秒前
Orange应助dilli采纳,获得10
11秒前
竹筏过海应助核桃采纳,获得61
11秒前
现代的十八完成签到,获得积分10
11秒前
天上白玉京完成签到,获得积分10
12秒前
小虎完成签到,获得积分10
12秒前
Elytra完成签到,获得积分10
12秒前
lulu发布了新的文献求助10
12秒前
12秒前
14秒前
Siriluck完成签到,获得积分10
14秒前
益达关注了科研通微信公众号
15秒前
xiaodian完成签到,获得积分10
15秒前
贪玩海之完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785143
求助须知:如何正确求助?哪些是违规求助? 3330552
关于积分的说明 10247087
捐赠科研通 3045973
什么是DOI,文献DOI怎么找? 1671801
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759691