Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review

情绪分析 计算机科学 背景(考古学) 数据科学 人工智能 深度学习 自然语言处理 抓住 心情 心理学 古生物学 精神科 生物 程序设计语言
作者
Jamin Rahman Jim,Md Apon Riaz Talukder,Partha Malakar,Md. Mohsin Kabir,Kamruddin Nur,M. F. Mridha
标识
DOI:10.1016/j.nlp.2024.100059
摘要

Sentiment analysis is a method within natural language processing that evaluates and identifies the emotional tone or mood conveyed in textual data. Scrutinizing words and phrases categorizes them into positive, negative, or neutral sentiments. The significance of sentiment analysis lies in its capacity to derive valuable insights from extensive textual data, empowering businesses to grasp customer sentiments, make informed choices, and enhance their offerings. For the further advancement of sentiment analysis, gaining a deep understanding of its algorithms, applications, current performance, and challenges is imperative. Therefore, in this extensive survey, we began exploring the vast array of application domains for sentiment analysis, scrutinizing them within the context of existing research. We then delved into prevalent pre-processing techniques, datasets, and evaluation metrics to enhance comprehension. We also explored Machine Learning, Deep Learning, Large Language Models and Pre-trained models in sentiment analysis, providing insights into their advantages and drawbacks. Subsequently, we precisely reviewed the experimental results and limitations of recent state-of-the-art articles. Finally, we discussed the diverse challenges encountered in sentiment analysis and proposed future research directions to mitigate these concerns. This extensive review provides a complete understanding of sentiment analysis, covering its models, application domains, results analysis, challenges, and research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助bzy采纳,获得10
1秒前
xxxxx发布了新的文献求助10
1秒前
香蕉觅云应助静好采纳,获得10
3秒前
上善若水完成签到 ,获得积分10
4秒前
河狸上校完成签到 ,获得积分10
4秒前
秦慧萍完成签到,获得积分10
5秒前
kytwenxian完成签到,获得积分0
7秒前
8秒前
9秒前
mingyahaoa完成签到,获得积分10
10秒前
fly发布了新的文献求助20
10秒前
10秒前
LEO1253285120完成签到,获得积分10
11秒前
烟花应助科研通管家采纳,获得10
12秒前
许甜甜鸭应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
许甜甜鸭应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
zz发布了新的文献求助10
16秒前
投稿即中完成签到,获得积分10
18秒前
海德堡完成签到,获得积分10
20秒前
20秒前
哈哈哈完成签到 ,获得积分20
22秒前
bzy发布了新的文献求助10
22秒前
顶刊收割机完成签到,获得积分10
26秒前
哈哈哈关注了科研通微信公众号
28秒前
白日梦想家完成签到,获得积分10
28秒前
30秒前
32秒前
zho关闭了zho文献求助
34秒前
Eternitymaria发布了新的文献求助10
35秒前
yyyyyyyyyy完成签到,获得积分10
38秒前
DoctorSUN发布了新的文献求助10
39秒前
耍酷楼房完成签到,获得积分10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834985
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498789
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705382
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123