ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images

人工智能 计算机科学 分割 数字减影血管造影 计算机视觉 图像分割 正规化(语言学) 减法 像素 模式识别(心理学) 血管造影 放射科 医学 数学 算术
作者
Weijin Xu,Huihua Yang,Yinghuan Shi,Tao Tan,Wentao Liu,Xipeng Pan,Yiming Deng,Feng Gao,Ruisheng Su
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1472-1483 被引量:3
标识
DOI:10.1109/jbhi.2023.3342195
摘要

Stroke is a leading cause of disability and fatality in the world, with ischemic stroke being the most common type. Digital Subtraction Angiography images, the gold standard in the operation process, can accurately show the contours and blood flow of cerebral vessels. The segmentation of cerebral vessels in DSA images can effectively help physicians assess the lesions. However, due to the disturbances in imaging parameters and changes in imaging scale, accurate cerebral vessel segmentation in DSA images is still a challenging task. In this paper, we propose a novel Edge Regularization Network (ERNet) to segment cerebral vessels in DSA images. Specifically, ERNet employs the erosion and dilation processes on the original binary vessel annotation to generate pseudo-ground truths of False Negative and False Positive, which serve as constraints to refine the coarse predictions based on their mapping relationship with the original vessels. In addition, we exploit a Hybrid Fusion Module based on convolution and transformers to extract local features and build long-range dependencies. Moreover, to support and advance the open research in the field of ischemic stroke, we introduce FPDSA, the first pixel-level semantic segmentation dataset for cerebral vessels. Extensive experiments on FPDSA illustrate the leading performance of our ERNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助开放筝采纳,获得10
1秒前
gyro完成签到,获得积分10
2秒前
Alex_发布了新的文献求助10
3秒前
英姑应助面朝大海采纳,获得10
3秒前
小马甲应助李广辉采纳,获得10
3秒前
坦率的无春完成签到,获得积分10
3秒前
jenningseastera应助huahua采纳,获得10
4秒前
陈彩璐发布了新的文献求助30
4秒前
4秒前
花海完成签到,获得积分10
4秒前
4秒前
小蘑菇应助iii采纳,获得10
5秒前
上官若男应助苹果从菡采纳,获得10
5秒前
满意的翠安关注了科研通微信公众号
6秒前
小树完成签到,获得积分10
6秒前
8秒前
wanci应助赵小可可可可采纳,获得10
8秒前
务实奎发布了新的文献求助10
9秒前
gyro发布了新的文献求助10
9秒前
ssssxr完成签到,获得积分20
9秒前
秋qiu发布了新的文献求助10
10秒前
11秒前
聪明藏今完成签到,获得积分10
11秒前
11秒前
13秒前
yc发布了新的文献求助10
13秒前
阿Q完成签到,获得积分10
14秒前
坚定路人完成签到,获得积分10
16秒前
华仔应助咔敏采纳,获得10
16秒前
bull完成签到 ,获得积分10
17秒前
邢慧兰完成签到,获得积分10
17秒前
P33333发布了新的文献求助10
17秒前
yuhuai发布了新的文献求助10
18秒前
务实奎完成签到,获得积分10
20秒前
21秒前
minnom完成签到 ,获得积分10
23秒前
Likx完成签到,获得积分10
23秒前
阿斯巴甜完成签到,获得积分10
23秒前
pza1995完成签到,获得积分20
23秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286