已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks

计算机科学 大洪水 解算器 图形 一套 人工神经网络 水力学 人工智能 数学优化 理论计算机科学 数学 工程类 哲学 航空航天工程 考古 历史 程序设计语言 神学
作者
Roberto Bentivoglio,Elvin Isufi,Sebastiaan Nicolas Jonkman,Riccardo Taormina
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (23): 4227-4246 被引量:28
标识
DOI:10.5194/hess-27-4227-2023
摘要

Abstract. Numerical modelling is a reliable tool for flood simulations, but accurate solutions are computationally expensive. In recent years, researchers have explored data-driven methodologies based on neural networks to overcome this limitation. However, most models are only used for a specific case study and disregard the dynamic evolution of the flood wave. This limits their generalizability to topographies that the model was not trained on and in time-dependent applications. In this paper, we introduce shallow water equation–graph neural network (SWE–GNN), a hydraulics-inspired surrogate model based on GNNs that can be used for rapid spatio-temporal flood modelling. The model exploits the analogy between finite-volume methods used to solve SWEs and GNNs. For a computational mesh, we create a graph by considering finite-volume cells as nodes and adjacent cells as being connected by edges. The inputs are determined by the topographical properties of the domain and the initial hydraulic conditions. The GNN then determines how fluxes are exchanged between cells via a learned local function. We overcome the time-step constraints by stacking multiple GNN layers, which expand the considered space instead of increasing the time resolution. We also propose a multi-step-ahead loss function along with a curriculum learning strategy to improve the stability and performance. We validate this approach using a dataset of two-dimensional dike breach flood simulations in randomly generated digital elevation models generated with a high-fidelity numerical solver. The SWE–GNN model predicts the spatio-temporal evolution of the flood for unseen topographies with mean average errors in time of 0.04 m for water depths and 0.004 m2 s−1 for unit discharges. Moreover, it generalizes well to unseen breach locations, bigger domains, and longer periods of time compared to those of the training set, outperforming other deep-learning models. On top of this, SWE–GNN has a computational speed-up of up to 2 orders of magnitude faster than the numerical solver. Our framework opens the doors to a new approach to replace numerical solvers in time-sensitive applications with spatially dependent uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianya完成签到,获得积分10
刚刚
Akim应助无限亦云采纳,获得10
1秒前
打打应助左白易采纳,获得10
2秒前
今后应助哭泣的雪巧采纳,获得10
3秒前
4秒前
上官若男应助zz采纳,获得10
4秒前
kjw0708发布了新的文献求助10
4秒前
小凡发布了新的文献求助50
4秒前
bkagyin应助慧慧采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
77发布了新的文献求助10
7秒前
nnn发布了新的文献求助30
8秒前
北斗发布了新的文献求助10
9秒前
枯槁赴渊发布了新的文献求助10
10秒前
11秒前
yeka完成签到,获得积分20
11秒前
jeff发布了新的文献求助10
11秒前
嗯嗯发布了新的文献求助10
12秒前
无畏完成签到 ,获得积分10
13秒前
14秒前
仧目一叶完成签到 ,获得积分10
15秒前
解语花发布了新的文献求助10
17秒前
lionel完成签到 ,获得积分10
17秒前
17秒前
英勇兔子完成签到 ,获得积分10
18秒前
77完成签到,获得积分10
19秒前
江生完成签到 ,获得积分10
22秒前
科研通AI6应助嗯嗯采纳,获得10
22秒前
Orange应助LL爱读书采纳,获得10
22秒前
阳光问安完成签到 ,获得积分10
22秒前
moos完成签到 ,获得积分10
22秒前
KCl完成签到 ,获得积分10
22秒前
大意的惊蛰完成签到,获得积分10
23秒前
kukude完成签到,获得积分10
23秒前
顾矜应助任性的咖啡采纳,获得10
24秒前
郑策元发布了新的文献求助10
24秒前
jasonjiang完成签到 ,获得积分0
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029771
求助须知:如何正确求助?哪些是违规求助? 4265170
关于积分的说明 13296921
捐赠科研通 4073698
什么是DOI,文献DOI怎么找? 2228111
邀请新用户注册赠送积分活动 1236711
关于科研通互助平台的介绍 1160948