生物
离体
运动性
计算生物学
细胞迁移
抑制器
细胞
细胞生物学
体内
癌症
遗传学
作者
Ana Panic,Jordan Moore,Daniel Gallego‐Perez
标识
DOI:10.1016/bs.mcb.2024.01.002
摘要
Current strategies to undermine the deleterious influence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME) are lacking effective clinical solutions, in large part, due to insufficient knowledge on susceptible cellular and molecular targets. We describe here the application of biomimetic microfabricated platforms designed to analyze migratory phenotypes of MDSCs in the tumor niche ex vivo, which may enable accelerated therapeutic discovery. By mimicking the guided structural cues present in the physiological architecture of the TME, aligned microtopography substrates can elucidate potential interventions on migratory phenotypes of MDSCs at the single clonal level. Coupled with cellular and molecular biology analysis tools, our approach employs real-time tracking analysis of cell motility to probe the dissemination characteristics of MDSCs under guided migration conditions. These methods allow us to identify cellular subpopulations of interest based on their disseminative and suppressive capabilities. By doing so, we illustrate the potential of applying microscale engineering tools, in concert with dynamic live cell imaging and bioanalysis methods to uncover novel exploitable motility targets for advancing cancer therapy discovery. The inherent simplicity and extended application to a variety of contexts in tumor-associated cell migration render this method widely accessible to existing biological laboratory conditions and interests.
科研通智能强力驱动
Strongly Powered by AbleSci AI