亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A label information fused medical image report generation framework

计算机科学 编码器 医学影像学 模式识别(心理学) 特征(语言学) 人工智能 机器学习 哲学 语言学 操作系统
作者
Shuifa Sun,Zicong Mei,Xiaolong Li,Tinglong Tang,Zemin Su,Yirong Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102823-102823
标识
DOI:10.1016/j.artmed.2024.102823
摘要

Medical imaging is an important tool for clinical diagnosis. Nevertheless, it is very time-consuming and error-prone for physicians to prepare imaging diagnosis reports. Therefore, it is necessary to develop some methods to generate medical imaging reports automatically. Currently, the task of medical imaging report generation is challenging in at least two aspects: (1) medical images are very similar to each other. The differences between normal and abnormal images and between different abnormal images are usually trivial; (2) unrelated or incorrect keywords describing abnormal findings in the generated reports lead to mis-communications. In this paper, we propose a medical image report generation framework composed of four modules, including a Transformer encoder, a MIX-MLP multi-label classification network, a co-attention mechanism (CAM) based semantic and visual feature fusion, and a hierarchical LSTM decoder. The Transformer encoder can be used to learn long-range dependencies between images and labels, effectively extract visual and semantic features of images, and establish long-term dependent relationships between visual and semantic information to accurately extract abnormal features from images. The MIX-MLP multi-label classification network, the co-attention mechanism and the hierarchical LSTM network can better identify abnormalities, achieving visual and text alignment fusion and multi-label diagnostic classification to better facilitate report generation. The results of the experiments performed on two widely used radiology report datasets, IU X-RAY and MIMIC-CXR, show that our proposed framework outperforms current report generation models in terms of both natural linguistic generation metrics and clinical efficacy assessment metrics. The code of this work is available online at https://github.com/watersunhznu/LIFMRG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi发布了新的文献求助10
3秒前
深情安青应助啊啊啊啊采纳,获得10
4秒前
12秒前
啊啊啊啊发布了新的文献求助10
17秒前
17秒前
典雅问寒应助啊啊啊啊采纳,获得10
26秒前
40秒前
章鱼完成签到,获得积分10
49秒前
核桃应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
lijianguo完成签到,获得积分10
1分钟前
小蘑菇应助颜沛文采纳,获得10
2分钟前
2分钟前
颜沛文发布了新的文献求助10
2分钟前
颜沛文完成签到,获得积分10
2分钟前
2分钟前
RED发布了新的文献求助10
2分钟前
Ava应助Sience采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
九月发布了新的文献求助10
2分钟前
weishuang0023发布了新的文献求助10
2分钟前
Sience发布了新的文献求助10
2分钟前
喊我彩彩发布了新的文献求助10
3分钟前
科研通AI5应助啊啊啊啊采纳,获得10
3分钟前
CodeCraft应助SUHAS采纳,获得10
3分钟前
3分钟前
3分钟前
啊啊啊啊发布了新的文献求助10
3分钟前
唠叨的秋发布了新的文献求助10
3分钟前
领导范儿应助ZSIYU采纳,获得10
3分钟前
刘卫朋完成签到,获得积分10
3分钟前
唠叨的秋完成签到,获得积分10
3分钟前
3分钟前
3分钟前
RED发布了新的文献求助10
3分钟前
典雅问寒完成签到,获得积分0
4分钟前
zqq完成签到,获得积分0
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804115
求助须知:如何正确求助?哪些是违规求助? 3348989
关于积分的说明 10341016
捐赠科研通 3065137
什么是DOI,文献DOI怎么找? 1682911
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764600