Plant disease recognition in a low data scenario using few-shot learning

弹丸 人工智能 植物病害 计算机科学 模式识别(心理学) 机器学习 生物 生物技术 材料科学 冶金
作者
Masoud Rezaei,Dean Diepeveen,Hamid Laga,M. G. K. Jones,Ferdous Sohel
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108812-108812 被引量:26
标识
DOI:10.1016/j.compag.2024.108812
摘要

Plant disease is one of the major problems in agriculture. Diseases damage plants, reduce yields and lower the quality of the produce. Traditional approaches to detecting plant diseases are usually based on visual inspection and laboratory testing, which can be expensive and time-consuming. They require trained plant pathologists as well as specialised equipment. Several studies demonstrate that artificial intelligence (AI) methods can produce promising results. However, AI methods are generally data-hungry and require large annotated datasets, and the collection and annotation of such datasets can be a limiting factor. It often appears that only a small amount of data is available for certain disease types. Whereas the performance of typical AI methods drops significantly when they are trained with inadequate data. This paper proposes a novel few-shot learning (FSL) method to detect plant diseases and alleviate the data scarcity problem. The proposed method uses as few as five images per class in the machine learning process. Our method is based on a state-of-the-art FSL pipeline called pre-training, meta-learning, and fine-tuning (PMF), integrated with a novel feature attention (FA) module; we call the overall method PMF+FA. The FA module emphasises the discriminative parts in the image and reduces the impact of complicated backgrounds and undesired objects. We used ResNet50 and Vision Transformers (ViT) as the feature learner. Two publicly available plant disease datasets were repurposed to meet the FSL requirements. We thoroughly evaluated the proposed method on the PlantDoc dataset, which contains disease samples in field environments with complex backgrounds and unwanted objects. The PMF+FA method with ViT achieved an average accuracy of 90.12% in disease recognition. The results demonstrate that the PMF+FA pipeline consistently outperforms the baseline PMF. The results also highlight that the method using ViT generates better results than ResNet50 for diagnosing complex data. ViT and ResNet50 implementations are computationally efficient, taking 1.11 and 0.57 ms on average per image to evaluate the test set respectively. The high throughput and high-quality performance with only a small training dataset indicate that the proposed technique can be used for real-time disease detection in digital farming systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imica完成签到 ,获得积分10
刚刚
苏州小北完成签到,获得积分10
3秒前
kouke80发布了新的文献求助10
5秒前
Johnlian完成签到 ,获得积分10
6秒前
欧阳慧玲完成签到 ,获得积分20
7秒前
小洪俊熙完成签到,获得积分10
10秒前
阿鑫完成签到 ,获得积分10
13秒前
微笑的巧蕊完成签到 ,获得积分10
14秒前
山君完成签到 ,获得积分20
14秒前
追光少年完成签到,获得积分10
17秒前
xelloss完成签到,获得积分10
17秒前
一玮完成签到 ,获得积分10
17秒前
彩色亿先完成签到 ,获得积分10
18秒前
滴滴完成签到 ,获得积分10
20秒前
小龙发布了新的文献求助10
23秒前
老迟到的烟酒升完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
rsdggsrser完成签到 ,获得积分10
26秒前
dajiejie完成签到 ,获得积分10
27秒前
张西西完成签到 ,获得积分10
28秒前
Lucycomplex完成签到,获得积分10
30秒前
hml123完成签到,获得积分10
30秒前
Yy完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
cheng完成签到,获得积分10
37秒前
小龙完成签到,获得积分10
37秒前
正直的雨双完成签到,获得积分10
37秒前
江流有声完成签到 ,获得积分10
38秒前
齐济完成签到 ,获得积分10
38秒前
浮浮世世完成签到,获得积分10
38秒前
Wilson完成签到 ,获得积分10
39秒前
紫倩完成签到,获得积分10
39秒前
为你钟情完成签到 ,获得积分10
40秒前
42秒前
Arctic完成签到 ,获得积分10
46秒前
席以亦发布了新的文献求助10
49秒前
幸福妙柏完成签到 ,获得积分10
52秒前
肖果完成签到 ,获得积分10
52秒前
研友_nqv5WZ完成签到 ,获得积分10
53秒前
我超爱cs完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834731
求助须知:如何正确求助?哪些是违规求助? 4138474
关于积分的说明 12808505
捐赠科研通 3882371
什么是DOI,文献DOI怎么找? 2135109
邀请新用户注册赠送积分活动 1155173
关于科研通互助平台的介绍 1054557