亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
量子星尘发布了新的文献求助10
9秒前
且听风吟完成签到,获得积分10
10秒前
21秒前
33秒前
嘟嘟嘟嘟发布了新的文献求助10
40秒前
传奇3应助JodieZhu采纳,获得30
43秒前
47秒前
50秒前
合适的哑铃完成签到,获得积分10
58秒前
59秒前
1分钟前
Able完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
码头整点薯条完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
观潮应助码头整点薯条采纳,获得10
1分钟前
Jasper应助码头整点薯条采纳,获得10
1分钟前
1分钟前
1分钟前
春宇浩然发布了新的文献求助10
1分钟前
2分钟前
roro熊完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
JodieZhu完成签到,获得积分10
2分钟前
2分钟前
义气丹雪应助JodieZhu采纳,获得30
2分钟前
2分钟前
糟糕的颜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Wei发布了新的文献求助50
2分钟前
wggggggy发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402