Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar

生物炭 概化理论 吸附 可解释性 响应面法 机器学习 计算机科学 热解 化学 人工智能 数学 统计 有机化学
作者
Tian Shen,Haoyi Peng,Xingzhong Yuan,Yunshan Liang,Shengqiang Liu,Zhibin Wu,Lijian Leng,Pufeng Qin
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:466: 133442-133442 被引量:27
标识
DOI:10.1016/j.jhazmat.2024.133442
摘要

Due to the broad interest in using biochar from biomass pyrolysis for the adsorption of heavy metals (HMs) in wastewater, machine learning (ML) has recently been adopted by many researchers to predict the adsorption capacity (η) of HMs on biochar. However, previous studies focused mainly on developing different ML algorithms to increase predictive performance, and no study shed light on engineering features to enhance predictive performance and improve model interpretability and generalizability. Here, based on a dataset widely used in previous ML studies, features of biochar were engineered—elemental compositions of biochar were calculated on mole basis—to improve predictive performance, achieving test R2 of 0.997 for the gradient boosting regression (GBR) model. The elemental ratio feature (H-O-2N)/C, representing the H site links to C (non-active site to HMs), was proposed for the first time to help interpret the GBR model. The (H-O-2N)/C and pH of biochar played essential roles in replacing cation exchange capacity (CEC) for predicting η. Moreover, expanding the coverages of variables by adding cases from references improved the generalizability of the model, and further validation using cases without CEC and specific surface area (R2 0.78) and adsorption experimental results (R2 0.72) proved the ML model desirable. Future studies in this area may take into account algorithm innovation, better description of variables, and higher coverage of variables to further increase the model's generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木南完成签到,获得积分20
1秒前
远山发布了新的文献求助30
1秒前
mubiguo完成签到,获得积分10
1秒前
Lucas应助HWJ采纳,获得10
1秒前
mia完成签到,获得积分20
2秒前
管理想完成签到,获得积分10
2秒前
霸气保温杯完成签到,获得积分10
2秒前
李家人应助DDD采纳,获得10
2秒前
Paddi完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
jing发布了新的文献求助10
4秒前
白衣修身完成签到,获得积分10
4秒前
5秒前
5秒前
SYLH应助小宋爱睡觉采纳,获得10
6秒前
林子楹发布了新的文献求助10
6秒前
6秒前
研友发布了新的文献求助10
7秒前
7秒前
越野完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Wudifairy完成签到,获得积分10
9秒前
9秒前
彭于彦祖完成签到,获得积分0
9秒前
花开发布了新的文献求助10
9秒前
承影发布了新的文献求助10
10秒前
10秒前
ASHhan111完成签到,获得积分10
10秒前
加吉鱼发布了新的文献求助10
11秒前
贾明灵完成签到,获得积分10
11秒前
HWJ完成签到,获得积分10
12秒前
ICe发布了新的文献求助10
12秒前
TaoJ发布了新的文献求助10
12秒前
12秒前
F123456完成签到,获得积分10
12秒前
fan051500完成签到,获得积分10
13秒前
13秒前
lamer完成签到,获得积分10
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816382
求助须知:如何正确求助?哪些是违规求助? 3359882
关于积分的说明 10405195
捐赠科研通 3077893
什么是DOI,文献DOI怎么找? 1690372
邀请新用户注册赠送积分活动 813754
科研通“疑难数据库(出版商)”最低求助积分说明 767819