Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar

生物炭 概化理论 吸附 可解释性 响应面法 机器学习 计算机科学 热解 化学 人工智能 数学 统计 有机化学
作者
Tian Shen,Haoyi Peng,Xingzhong Yuan,Yunshan Liang,Shengqiang Liu,Zhibin Wu,Lijian Leng,Pufeng Qin
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:466: 133442-133442 被引量:52
标识
DOI:10.1016/j.jhazmat.2024.133442
摘要

Due to the broad interest in using biochar from biomass pyrolysis for the adsorption of heavy metals (HMs) in wastewater, machine learning (ML) has recently been adopted by many researchers to predict the adsorption capacity (η) of HMs on biochar. However, previous studies focused mainly on developing different ML algorithms to increase predictive performance, and no study shed light on engineering features to enhance predictive performance and improve model interpretability and generalizability. Here, based on a dataset widely used in previous ML studies, features of biochar were engineered—elemental compositions of biochar were calculated on mole basis—to improve predictive performance, achieving test R2 of 0.997 for the gradient boosting regression (GBR) model. The elemental ratio feature (H-O-2N)/C, representing the H site links to C (non-active site to HMs), was proposed for the first time to help interpret the GBR model. The (H-O-2N)/C and pH of biochar played essential roles in replacing cation exchange capacity (CEC) for predicting η. Moreover, expanding the coverages of variables by adding cases from references improved the generalizability of the model, and further validation using cases without CEC and specific surface area (R2 0.78) and adsorption experimental results (R2 0.72) proved the ML model desirable. Future studies in this area may take into account algorithm innovation, better description of variables, and higher coverage of variables to further increase the model's generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cp1690发布了新的文献求助10
2秒前
遂安完成签到,获得积分10
2秒前
2秒前
花啊拾肆发布了新的文献求助30
2秒前
开放如天完成签到 ,获得积分10
3秒前
5秒前
5秒前
酷波er应助懦弱的智宸采纳,获得10
5秒前
6秒前
fangyuan发布了新的文献求助10
7秒前
新鲜事完成签到,获得积分10
7秒前
8秒前
li完成签到,获得积分10
9秒前
9秒前
9秒前
aaa发布了新的文献求助10
11秒前
11秒前
11秒前
YuSHhan完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
无疾而终发布了新的文献求助50
13秒前
15秒前
勤劳小蕾发布了新的文献求助30
15秒前
逺山長发布了新的文献求助10
15秒前
风清扬发布了新的文献求助10
17秒前
17秒前
17秒前
一蓑烟雨任平生应助QR采纳,获得10
17秒前
yanliu95完成签到,获得积分10
18秒前
18秒前
19秒前
loributterfly发布了新的文献求助10
19秒前
19秒前
蝴蝶与猫完成签到 ,获得积分10
20秒前
嗯哼应助珑一采纳,获得30
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073193
求助须知:如何正确求助?哪些是违规求助? 4293286
关于积分的说明 13378053
捐赠科研通 4114770
什么是DOI,文献DOI怎么找? 2253101
邀请新用户注册赠送积分活动 1257931
关于科研通互助平台的介绍 1190770