多输入多输出
计算机科学
控制理论(社会学)
线性化
非线性系统
模型预测控制
欺骗
趋同(经济学)
有界函数
控制器(灌溉)
人工神经网络
径向基函数
控制(管理)
人工智能
数学
心理学
计算机网络
社会心理学
频道(广播)
数学分析
物理
量子力学
农学
经济
生物
经济增长
作者
Zhenzhen Pan,Ronghu Chi,Zhongsheng Hou
出处
期刊:IEEE Transactions on Signal and Information Processing over Networks
日期:2024-01-01
卷期号:10: 32-47
被引量:6
标识
DOI:10.1109/tsipn.2023.3346994
摘要
This work explores the challenging problems of nonlinear dynamics, nonaffine structures, heterogeneous properties, and deception attack together and proposes a novel distributed model-free adaptive predictive control (DMFAPC) for multiple-input-multiple-output (MIMO) multi-agent systems (MASs). A dynamic linearization method is introduced to address the nonlinear heterogeneous dynamics which is transformed as the unknown parameters in the obtained linear data model. A radial basis function neural network is designed to detect the deception attack and to estimate the polluted output that is further used in the controller design to compensate for the effect. Then, the DMFAPC is designed by defining a new expanded distributed output with a stochastic factor introduced. The bounded convergence is proved by using the contraction mapping method and the effectiveness of the proposed DMFAPC is verified by simulation examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI