亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-Integrated Hybrid Convolutional Neural Network for Dose Prediction in Nasopharyngeal Carcinoma Radiotherapy

鼻咽癌 卷积神经网络 放射治疗 变压器 计算机科学 医学 人工神经网络 内科学 肿瘤科 癌症研究 人工智能 工程类 电气工程 电压
作者
Xiangchen Li,Yanhua Liu,Feixiang Zhao,Yang Feng,Wang Luo
标识
DOI:10.1007/s10278-024-01296-3
摘要

Radiotherapy is recognized as the major treatment of nasopharyngeal carcinoma. Rapid and accurate dose prediction can improve the efficiency of the treatment planning process and the quality of radiotherapy plans. Currently, deep learning-based methods have been widely applied to dose prediction for radiotherapy treatment planning. However, it is important to note that existing models based on Convolutional Neural Networks (CNN) often overlook long-distance information. Although some studies try to use Transformer to solve the problem, it lacks the ability of CNN to process the spatial information inherent in images. Therefore, we propose a novel CNN and Transformer hybrid dose prediction model. To enhance the transmission ability of features between CNN and Transformer, we design a hierarchical dense recurrent encoder with a channel attention mechanism. Additionally, we propose a progressive decoder that preserves richer texture information through layer-wise reconstruction of high-dimensional feature maps. The proposed model also introduces object-driven skip connections, which facilitate the flow of information between the encoder and decoder. Experiments are conducted on in-house datasets, and the results show that the proposed model is superior to baseline methods in most dosimetric criteria. In addition, the image analysis metrics including PSNR, SSIM, and NRMSE demonstrate that the proposed model is consistent with ground truth and produces promising visual effects compared to other advanced methods. The proposed method could be taken as a powerful clinical guidance tool for physicists, significantly enhancing the efficiency of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/THCN-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
l123发布了新的文献求助10
2秒前
wys完成签到,获得积分10
8秒前
淡漠完成签到 ,获得积分10
10秒前
华仔应助守仁则阳明采纳,获得10
11秒前
13秒前
liudy完成签到,获得积分10
16秒前
852应助lf采纳,获得10
16秒前
li发布了新的文献求助10
17秒前
liudy发布了新的文献求助10
20秒前
沉默白桃完成签到 ,获得积分10
22秒前
22秒前
li完成签到,获得积分10
24秒前
26秒前
28秒前
Akim应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
lf发布了新的文献求助10
28秒前
明亮猫咪发布了新的文献求助10
29秒前
orixero应助江洋大盗采纳,获得10
30秒前
杨紫欣完成签到 ,获得积分10
31秒前
早睡一哥完成签到,获得积分10
34秒前
江洋大盗完成签到,获得积分10
35秒前
英俊的铭应助柠栀采纳,获得10
35秒前
38秒前
小马甲应助整齐海秋采纳,获得10
39秒前
江洋大盗发布了新的文献求助10
44秒前
华仔应助lan采纳,获得10
45秒前
46秒前
49秒前
49秒前
xdy完成签到 ,获得积分10
51秒前
开朗满天发布了新的文献求助10
53秒前
牛牛完成签到 ,获得积分10
53秒前
落寞平萱发布了新的文献求助10
53秒前
丸子完成签到 ,获得积分10
53秒前
andrele发布了新的文献求助30
54秒前
54秒前
lan完成签到,获得积分20
57秒前
lan发布了新的文献求助10
1分钟前
yangzai完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204542
捐赠科研通 3257350
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613