One-Stage Anchor-Free Online Multiple Target Tracking with Deformable Local Attention and Task-Aware Prediction

计算机科学 人工智能 任务(项目管理) 跟踪(教育) 计算机视觉 阶段(地层学) 任务分析 工程类 心理学 古生物学 教育学 系统工程 生物
作者
Weiming Hu,Shaoru Wang,Zongwei Zhou,Jin Gao,Yangxi Li,Stephen J. Maybank
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-16
标识
DOI:10.1109/tpami.2024.3457886
摘要

The tracking-by-detection paradigm currently dominates multiple target tracking algorithms. It usually includes three tasks: target detection, appearance feature embedding, and data association. Carrying out these three tasks successively usually leads to lower tracking efficiency. In this paper, we propose a one-stage anchor-free multiple task learning framework which carries out target detection and appearance feature embedding in parallel to substantially increase the tracking speed. This framework simultaneously predicts a target detection and produces a feature embedding for each location, by sharing a pyramid of feature maps. We propose a deformable local attention module which utilizes the correlations between features at different locations within a target to obtain more discriminative features. We further propose a task-aware prediction module which utilizes deformable convolutions to select the most suitable locations for the different tasks. At the selected locations, classification of samples into foreground or background, appearance feature embedding, and target box regression are carried out. Two effective training strategies, regression range overlapping and sample reweighting, are proposed to reduce missed detections in dense scenes. Ambiguous samples whose identities are difficult to determine are effectively dealt with to obtain more accurate feature embedding of target appearance. An appearance-enhanced non-maximum suppression is proposed to reduce over-suppression of true targets in crowded scenes. Based on the one-stage anchor-free network with the deformable local attention module and the task-aware prediction module, we implement a new online multiple target tracker. Experimental results show that our tracker achieves a very fast speed while maintaining a high tracking accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
淡定鞋垫发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
二硫碘化钾发布了新的文献求助150
3秒前
404发布了新的文献求助10
4秒前
5秒前
思源应助耳机单蹦采纳,获得10
5秒前
5秒前
koutianle完成签到 ,获得积分10
5秒前
阔达曼易发布了新的文献求助30
6秒前
邮箱登录完成签到,获得积分10
6秒前
sanmu发布了新的文献求助10
6秒前
隐形曼青应助樱桃肉丸子采纳,获得10
6秒前
小赵同学发布了新的文献求助10
6秒前
abc完成签到,获得积分20
6秒前
6秒前
搜集达人应助123采纳,获得10
7秒前
10秒前
10秒前
全一斩完成签到,获得积分10
10秒前
耿丹彤完成签到,获得积分10
11秒前
11秒前
苇一完成签到,获得积分10
11秒前
善良书蕾完成签到,获得积分10
12秒前
fafa发布了新的文献求助10
12秒前
abc发布了新的文献求助10
12秒前
12秒前
wobisheng完成签到,获得积分10
13秒前
大白完成签到,获得积分10
13秒前
13秒前
Walden发布了新的文献求助10
13秒前
在水一方应助ShellyHan采纳,获得20
14秒前
上官若男应助化学兔八哥采纳,获得10
14秒前
田様应助呱呱太采纳,获得10
14秒前
14秒前
银河完成签到,获得积分10
14秒前
慕青应助牛奶加燕麦采纳,获得10
15秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
The Well-Connected Animal 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896132
求助须知:如何正确求助?哪些是违规求助? 3440033
关于积分的说明 10815484
捐赠科研通 3164998
什么是DOI,文献DOI怎么找? 1748424
邀请新用户注册赠送积分活动 844701
科研通“疑难数据库(出版商)”最低求助积分说明 788168