Identification of the Shared Gene Signatures Between Alzheimer’s Disease and Diabetes-Associated Cognitive Dysfunction by Bioinformatics Analysis Combined with Biological Experiment

鉴定(生物学) 疾病 生物信息学 认知 糖尿病 计算生物学 基因 医学 认知障碍 痴呆 阿尔茨海默病 神经科学 生物 心理学 遗传学 内科学 内分泌学 植物
作者
Yixin Chen,Xueying Ji,Zhijun Bao
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:101 (2): 611-625 被引量:2
标识
DOI:10.3233/jad-240353
摘要

Background: The connection between diabetes-associated cognitive dysfunction (DACD) and Alzheimer’s disease (AD) has been shown in several observational studies. However, it remains controversial as to how the two related. Objective: To explore shared genes and pathways between DACD and AD using bioinformatics analysis combined with biological experiment. Methods: We analyzed GEO microarray data to identify DEGs in AD and type 2 diabetes mellitus (T2DM) induced-DACD datasets. Weighted gene co-expression network analysis was used to find modules, while R packages identified overlapping genes. A robust protein-protein interaction network was constructed, and hub genes were identified with Gene ontology enrichment and Kyoto Encyclopedia of Genome and Genome pathway analyses. HT22 cells were cultured under high glucose and amyloid-β 25–35 (Aβ 25-35 ) conditions to establish DACD and AD models. Quantitative polymerase chain reaction with reverse transcription verification analysis was then performed on intersection genes. Results: Three modules each in AD and T2DM induced-DACD were identified as the most relevant and 10 hub genes were screened, with analysis revealing enrichment in pathways such as synaptic vesicle cycle and GABAergic synapse. Through biological experimentation verification, 6 key genes were identified. Conclusions: This study is the first to use bioinformatics tools to uncover the genetic link between AD and DACD. GAD1, UCHL1, GAP43, CARNS1, TAGLN3, and SH3GL2 were identified as key genes connecting AD and DACD. These findings offer new insights into the diseases’ pathogenesis and potential diagnostic and therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
任风完成签到,获得积分10
1秒前
3秒前
爆学的狗发布了新的文献求助10
4秒前
鱼鱼鱼关注了科研通微信公众号
4秒前
炙热果汁发布了新的文献求助10
5秒前
xaaowang完成签到,获得积分20
5秒前
7秒前
管小有理发布了新的文献求助10
7秒前
TOMORROW完成签到,获得积分10
8秒前
8秒前
9秒前
啦啦发布了新的文献求助10
9秒前
10秒前
顾矜应助自然的南露采纳,获得10
10秒前
李健的小迷弟应助千朝词采纳,获得10
10秒前
11秒前
12秒前
13秒前
HeT完成签到,获得积分10
14秒前
14秒前
DTOU应助Ivan采纳,获得10
14秒前
英吉利25发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
管小有理关注了科研通微信公众号
16秒前
暖冬22发布了新的文献求助10
16秒前
16秒前
思源应助豆包采纳,获得10
17秒前
YSY关闭了YSY文献求助
17秒前
量子星尘发布了新的文献求助10
17秒前
qq发布了新的文献求助10
17秒前
1234发布了新的文献求助10
18秒前
ding应助wuliweiwei采纳,获得10
18秒前
HeT发布了新的文献求助10
18秒前
19秒前
19秒前
ryg发布了新的文献求助30
20秒前
20秒前
xin发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597