UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration

图像配准 人工智能 超分辨率 计算机视觉 计算机科学 医学影像学 变压器 图像分辨率 图像(数学) 模式识别(心理学) 工程类 电压 电气工程
作者
Runshi Zhang,Hao Mo,Junchen Wang,Bimeng Jie,Yang He,Nenghao Jin,Liang Zhu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 891-902 被引量:9
标识
DOI:10.1109/tmi.2024.3467919
摘要

Complicated image registration is a key issue in medical image analysis, and deep learning-based methods have achieved better results than traditional methods. The methods include ConvNet-based and Transformer-based methods. Although ConvNets can effectively utilize local information to reduce redundancy via small neighborhood convolution, the limited receptive field results in the inability to capture global dependencies. Transformers can establish long-distance dependencies via a self-attention mechanism; however, the intense calculation of the relationships among all tokens leads to high redundancy. We propose a novel unsupervised image registration method named the unified Transformer and superresolution (UTSRMorph) network, which can enhance feature representation learning in the encoder and generate detailed displacement fields in the decoder to overcome these problems. We first propose a fusion attention block to integrate the advantages of ConvNets and Transformers, which inserts a ConvNet-based channel attention module into a multihead self-attention module. The overlapping attention block, a novel cross-attention method, uses overlapping windows to obtain abundant correlations with match information of a pair of images. Then, the blocks are flexibly stacked into a new powerful encoder. The decoder generation process of a high-resolution deformation displacement field from low-resolution features is considered as a superresolution process. Specifically, the superresolution module was employed to replace interpolation upsampling, which can overcome feature degradation. UTSRMorph was compared to state-of-the-art registration methods in the 3D brain MR (OASIS, IXI) and MR-CT datasets (abdomen, craniomaxillofacial). The qualitative and quantitative results indicate that UTSRMorph achieves relatively better performance. The code and datasets are publicly available at https://github.com/Runshi-Zhang/UTSRMorph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hilda007发布了新的文献求助10
1秒前
李爱国应助123采纳,获得10
1秒前
鱼儿乐园完成签到 ,获得积分10
2秒前
小雨发布了新的文献求助10
2秒前
2秒前
3秒前
王不留行完成签到,获得积分10
3秒前
jy发布了新的文献求助10
5秒前
5秒前
样样精通完成签到,获得积分10
6秒前
7秒前
claire完成签到,获得积分20
8秒前
8秒前
scutwqq完成签到,获得积分10
9秒前
zhounini1989发布了新的文献求助10
10秒前
超级的皮带完成签到,获得积分10
11秒前
自然可乐完成签到,获得积分10
11秒前
样样精通发布了新的文献求助10
11秒前
沙粒子完成签到,获得积分20
11秒前
CikY完成签到,获得积分10
11秒前
13秒前
剑八发布了新的文献求助10
13秒前
小蘑菇应助展锋采纳,获得10
14秒前
传统的青完成签到 ,获得积分10
14秒前
15秒前
火星上兰完成签到,获得积分10
15秒前
ZYQ完成签到 ,获得积分10
15秒前
wangzian完成签到 ,获得积分10
15秒前
情怀应助答题不卡采纳,获得10
16秒前
NexusExplorer应助阿然采纳,获得10
16秒前
勇敢虫子不怕困难完成签到,获得积分10
16秒前
惠飞薇完成签到 ,获得积分10
17秒前
聪明汉堡完成签到,获得积分10
18秒前
18秒前
18秒前
悦耳丹秋发布了新的文献求助10
20秒前
菜菜应助小李采纳,获得10
20秒前
888完成签到,获得积分10
21秒前
嘿嘿发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308630
求助须知:如何正确求助?哪些是违规求助? 4453704
关于积分的说明 13857839
捐赠科研通 4341445
什么是DOI,文献DOI怎么找? 2383900
邀请新用户注册赠送积分活动 1378533
关于科研通互助平台的介绍 1346495