UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration

图像配准 人工智能 超分辨率 计算机视觉 计算机科学 医学影像学 变压器 图像分辨率 图像(数学) 模式识别(心理学) 工程类 电压 电气工程
作者
Runshi Zhang,Hao Mo,Junchen Wang,Bimeng Jie,Yang He,Nenghao Jin,Liang Zhu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3467919
摘要

Complicated image registration is a key issue in medical image analysis, and deep learning-based methods have achieved better results than traditional methods. The methods include ConvNet-based and Transformer-based methods. Although ConvNets can effectively utilize local information to reduce redundancy via small neighborhood convolution, the limited receptive field results in the inability to capture global dependencies. Transformers can establish long-distance dependencies via a self-attention mechanism; however, the intense calculation of the relationships among all tokens leads to high redundancy. We propose a novel unsupervised image registration method named the unified Transformer and superresolution (UTSRMorph) network, which can enhance feature representation learning in the encoder and generate detailed displacement fields in the decoder to overcome these problems. We first propose a fusion attention block to integrate the advantages of ConvNets and Transformers, which inserts a ConvNet-based channel attention module into a multihead self-attention module. The overlapping attention block, a novel cross-attention method, uses overlapping windows to obtain abundant correlations with match information of a pair of images. Then, the blocks are flexibly stacked into a new powerful encoder. The decoder generation process of a high-resolution deformation displacement field from low-resolution features is considered as a superresolution process. Specifically, the superresolution module was employed to replace interpolation upsampling, which can overcome feature degradation. UTSRMorph was compared to state-of-the-art registration methods in the 3D brain MR (OASIS, IXI) and MR-CT datasets. The qualitative and quantitative results indicate that UTSRMorph achieves relatively better performance. The code and datasets are publicly available at https://github.com/Runshi-Zhang/UTSRMorph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyl完成签到,获得积分10
刚刚
用户123完成签到,获得积分10
刚刚
shiyi完成签到,获得积分10
1秒前
柠檬西米露完成签到,获得积分10
2秒前
SWEET完成签到,获得积分10
3秒前
乔乔兔完成签到,获得积分10
3秒前
陈一一完成签到 ,获得积分10
4秒前
昭玥完成签到,获得积分10
4秒前
领导范儿应助Stardust采纳,获得10
4秒前
婷婷完成签到,获得积分20
4秒前
zhangjh发布了新的文献求助10
5秒前
时冬冬应助LaTeXer采纳,获得20
5秒前
5秒前
初次完成签到 ,获得积分10
6秒前
6秒前
7秒前
yangtao199发布了新的文献求助150
8秒前
矮小的聪展完成签到,获得积分10
9秒前
小罗飞飞飞完成签到 ,获得积分10
9秒前
CodeCraft应助花生酱采纳,获得10
10秒前
10秒前
靓丽的熠彤完成签到,获得积分10
10秒前
隐形曼青应助zhangjh采纳,获得10
10秒前
11秒前
LaTeXer重新开启了skikiqi文献应助
11秒前
11秒前
12秒前
13秒前
一颗小白菜完成签到,获得积分10
14秒前
14秒前
李潇潇关注了科研通微信公众号
17秒前
better发布了新的文献求助10
17秒前
汉堡包应助羊不麻烦采纳,获得10
17秒前
李昕123发布了新的文献求助20
17秒前
mmmm发布了新的文献求助10
18秒前
暴躁汉堡完成签到,获得积分10
19秒前
kkneed完成签到,获得积分10
19秒前
yohana完成签到 ,获得积分10
19秒前
hongyan发布了新的文献求助20
20秒前
123完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304