Disentangled Multi-Relational Graph Convolutional Network for Pedestrian Trajectory Prediction

行人 计算机科学 弹道 图形 多样性(控制论) 构造(python库) 人工智能 社交网络(社会语言学) 机器学习 理论计算机科学 数据挖掘 社会化媒体 运输工程 工程类 物理 天文 万维网 程序设计语言
作者
Inhwan Bae,Hae‐Gon Jeon
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (2): 911-919 被引量:45
标识
DOI:10.1609/aaai.v35i2.16174
摘要

Pedestrian trajectory prediction is one of the important tasks required for autonomous navigation and social robots in human environments. Previous studies focused on estimating social forces among individual pedestrians. However, they did not consider the social forces of groups on pedestrians, which results in over-collision avoidance problems. To address this problem, we present a Disentangled Multi-Relational Graph Convolutional Network (DMRGCN) for socially entangled pedestrian trajectory prediction. We first introduce a novel disentangled multi-scale aggregation to better represent social interactions, among pedestrians on a weighted graph. For the aggregation, we construct the multi-relational weighted graphs based on distances and relative displacements among pedestrians. In the prediction step, we propose a global temporal aggregation to alleviate accumulated errors for pedestrians changing their directions. Finally, we apply DropEdge into our DMRGCN to avoid the over-fitting issue on relatively small pedestrian trajectory datasets. Through the effective incorporation of the three parts within an end-to-end framework, DMRGCN achieves state-of-the-art performances on a variety of challenging trajectory prediction benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
风中似狮发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
chiyudoubao发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
张萍完成签到,获得积分20
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
搜集达人应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626696
求助须知:如何正确求助?哪些是违规求助? 4712525
关于积分的说明 14959934
捐赠科研通 4782412
什么是DOI,文献DOI怎么找? 2554487
邀请新用户注册赠送积分活动 1516118
关于科研通互助平台的介绍 1476413