A hybrid deep learning framework for urban air quality forecasting

计算机科学 人工智能 过度拟合 超参数 深度学习 机器学习 计算 特征工程 粒子群优化 预处理器 空气质量指数 人工神经网络 算法 物理 气象学
作者
Apeksha Aggarwal,Durga Toshniwal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:329: 129660-129660 被引量:37
标识
DOI:10.1016/j.jclepro.2021.129660
摘要

Deep learning models address air quality forecasting problems far more effectively and efficiently than the traditional machine learning models. Specifically, Long Short-Term Memory networks (LSTMs) constitute a significant breakthrough in understanding the complex sequential behavioral dependencies of the time series. Further, LSTM models justify well with the speed–accuracy tradeoff, among other deep learning models. However, there are several limitations of such deep learning models. Firstly, the addition of multiple hidden layers, on the one hand, improves the performance but, on the other hand, requires extensive hardware and computation capabilities. Secondly, most of the previous works that utilized LSTMs for air quality forecasting do not consider the issue of optimal hyperparameter calibration. While deciding the gradient, network learning parameters should be so fixed such that the model does not underfit or overfit. To address these issues, a stochastic optimization algorithm, mimicking the pattern of flocking birds, is utilized to find the most fitting solution in the parameter search space. Particle swarm optimization setup primarily models varying particles representing parameters to reach an optimum state. Furthermore, the Spatio-temporal instabilities of LSTM models are addressed in this work using preprocessing, segmentation and feature engineering to understand seasonal and trend characteristics along with the Spatio-temporal correlation of the time series. The proposed model is employed on the air quality dataset of 15 locations in India. A variety of experiments are performed to prove the superiority of the proposed method. Firstly, a comparison with traditional sequential models and deep learning models is done. Secondly, results are further evaluated over several existing benchmark dataset samples. Results suggest that the proposed method outperforms existing forecasting models when evaluated over a variety of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
小二郎应助令狐擎宇采纳,获得10
刚刚
义气天真完成签到,获得积分10
1秒前
空城完成签到,获得积分10
1秒前
1秒前
doctorhyh完成签到,获得积分10
2秒前
芝麻完成签到,获得积分10
2秒前
灵巧水蓝完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
Tonald Yang完成签到,获得积分20
4秒前
LQ完成签到,获得积分10
4秒前
收拾收拾发布了新的文献求助30
4秒前
无花果应助逗逗采纳,获得10
5秒前
苗条馒头完成签到,获得积分10
5秒前
喜悦香薇完成签到,获得积分10
5秒前
榴莲姑娘完成签到 ,获得积分10
6秒前
薛wen晶完成签到 ,获得积分10
7秒前
婉莹完成签到 ,获得积分0
7秒前
7秒前
温暖涵柳发布了新的文献求助10
8秒前
RY完成签到,获得积分20
8秒前
娟娟完成签到 ,获得积分10
8秒前
meng发布了新的文献求助10
8秒前
zhudaxia发布了新的文献求助10
8秒前
Tonald Yang发布了新的文献求助30
9秒前
ding应助阳阳语晗采纳,获得10
9秒前
陆智彭发布了新的文献求助10
9秒前
欢喜的火龙果完成签到,获得积分10
10秒前
dorianao应助樊尔风采纳,获得10
10秒前
scott_zip完成签到 ,获得积分10
10秒前
10秒前
臧为完成签到,获得积分10
11秒前
blueskyzhi完成签到,获得积分10
11秒前
哇塞完成签到 ,获得积分10
12秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904060
求助须知:如何正确求助?哪些是违规求助? 3448940
关于积分的说明 10855012
捐赠科研通 3174349
什么是DOI,文献DOI怎么找? 1753782
邀请新用户注册赠送积分活动 847973
科研通“疑难数据库(出版商)”最低求助积分说明 790628