已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro

自由能微扰 对接(动物) 化学 分子力学 配体(生物化学) 背景(考古学) 相互作用能 计算生物学 水准点(测量) 分子动力学 计算机科学 计算化学 生物化学 生物 医学 受体 地理 兽医学 分子 地图学 古生物学 有机化学
作者
Sơn Tùng Ngô,Nguyễn Minh Tâm,Phạm Minh Quân,Trung Hai Nguyen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (5): 2302-2312 被引量:81
标识
DOI:10.1021/acs.jcim.1c00159
摘要

The COVID-19 pandemic has killed millions of people worldwide since its outbreak in December 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, developing an effective therapy is an urgent task, which requires accurately estimating the ligand-binding free energy to SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with the experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The molecular docking approach was manipulated using Autodock Vina (Vina) and Autodock4 (AD4) protocols to preliminarily investigate the ligand-binding affinity and pose to SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4, and for free energy methods, FEP is the most accurate method, followed by LIE, FPL, and MM-PBSA (FEP > LIE ≈ FPL > MM-PBSA). Moreover, atomistic simulations revealed that the van der Waals interaction is the dominant factor. The residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and Gln189 are essential elements affecting the binding process. Our benchmark provides guidelines for further investigations using computational approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
何睦完成签到,获得积分10
1秒前
852应助言言采纳,获得10
1秒前
隐形曼青应助cheng采纳,获得50
2秒前
LL完成签到,获得积分10
2秒前
科研通AI6应助dubobo采纳,获得10
3秒前
3秒前
long发布了新的文献求助10
3秒前
4秒前
孙孙发布了新的文献求助10
4秒前
4秒前
Grace发布了新的文献求助10
5秒前
英姑应助long采纳,获得10
7秒前
hannah发布了新的文献求助10
8秒前
sky发布了新的文献求助10
9秒前
慕青应助WZ采纳,获得10
10秒前
科研通AI5应助陶醉的羞花采纳,获得10
11秒前
小燕子发布了新的文献求助10
11秒前
13秒前
鱼羊明完成签到 ,获得积分10
14秒前
DONG发布了新的文献求助10
15秒前
远山发布了新的文献求助10
16秒前
18秒前
22秒前
美满一寡发布了新的文献求助10
22秒前
Orange应助科研通管家采纳,获得30
23秒前
汉堡包应助科研通管家采纳,获得10
24秒前
每天自然醒完成签到,获得积分10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
yydragen应助科研通管家采纳,获得50
24秒前
24秒前
Jasper应助科研通管家采纳,获得30
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
Howard完成签到,获得积分10
25秒前
洛洛洛发布了新的文献求助10
26秒前
科研通AI6应助ruuuu采纳,获得10
29秒前
彭于晏应助小燕子采纳,获得10
32秒前
33秒前
孙茜完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4374769
求助须知:如何正确求助?哪些是违规求助? 3871252
关于积分的说明 12066363
捐赠科研通 3514035
什么是DOI,文献DOI怎么找? 1928388
邀请新用户注册赠送积分活动 970089
科研通“疑难数据库(出版商)”最低求助积分说明 868836