BayeshERG: a robust, reliable and interpretable deep learning model for predicting hERG channel blockers

赫尔格 可解释性 计算机科学 机器学习 人工智能 深度学习 数据挖掘 医学 钾通道 内分泌学
作者
Hyunho Kim,Minsu Park,Ingoo Lee,Hojung Nam
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:19
标识
DOI:10.1093/bib/bbac211
摘要

Abstract Unintended inhibition of the human ether-à-go-go-related gene (hERG) ion channel by small molecules leads to severe cardiotoxicity. Thus, hERG channel blockage is a significant concern in the development of new drugs. Several computational models have been developed to predict hERG channel blockage, including deep learning models; however, they lack robustness, reliability and interpretability. Here, we developed a graph-based Bayesian deep learning model for hERG channel blocker prediction, named BayeshERG, which has robust predictive power, high reliability and high resolution of interpretability. First, we applied transfer learning with 300 000 large data in initial pre-training to increase the predictive performance. Second, we implemented a Bayesian neural network with Monte Carlo dropout to calibrate the uncertainty of the prediction. Third, we utilized global multihead attentive pooling to augment the high resolution of structural interpretability for the hERG channel blockers and nonblockers. We conducted both internal and external validations for stringent evaluation; in particular, we benchmarked most of the publicly available hERG channel blocker prediction models. We showed that our proposed model outperformed predictive performance and uncertainty calibration performance. Furthermore, we found that our model learned to focus on the essential substructures of hERG channel blockers via an attention mechanism. Finally, we validated the prediction results of our model by conducting in vitro experiments and confirmed its high validity. In summary, BayeshERG could serve as a versatile tool for discovering hERG channel blockers and helping maximize the possibility of successful drug discovery. The data and source code are available at our GitHub repository (https://github.com/GIST-CSBL/BayeshERG).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Carsen发布了新的文献求助10
3秒前
3秒前
姚美阁完成签到 ,获得积分10
3秒前
3秒前
一一应助asfgh1305采纳,获得10
3秒前
高高完成签到,获得积分10
5秒前
养猪大户完成签到 ,获得积分10
5秒前
5秒前
xcxcxcily完成签到,获得积分10
7秒前
Cui发布了新的文献求助10
8秒前
11秒前
小二郎应助小景007采纳,获得10
11秒前
NexusExplorer应助Cui采纳,获得10
11秒前
11秒前
11秒前
不准吃烤肉完成签到,获得积分10
15秒前
swy完成签到,获得积分10
18秒前
19秒前
20秒前
22秒前
小玉应助木对走召采纳,获得10
22秒前
重要的菲鹰完成签到 ,获得积分10
23秒前
太就完成签到,获得积分10
24秒前
123发布了新的文献求助10
27秒前
小景007发布了新的文献求助10
27秒前
28秒前
积极的邪欢完成签到,获得积分10
28秒前
31秒前
qingzhiwu发布了新的文献求助10
32秒前
33秒前
孤岛发布了新的文献求助10
33秒前
34秒前
34秒前
35秒前
Liz发布了新的文献求助30
37秒前
称心乐枫发布了新的文献求助10
38秒前
年轻寒云完成签到 ,获得积分10
38秒前
yy发布了新的文献求助10
38秒前
不熬夜发布了新的文献求助10
40秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
成人寻常型银屑病医患共决策-海峡两岸及港澳地区专家共识 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829470
求助须知:如何正确求助?哪些是违规求助? 3372049
关于积分的说明 10470651
捐赠科研通 3091653
什么是DOI,文献DOI怎么找? 1701284
邀请新用户注册赠送积分活动 818342
科研通“疑难数据库(出版商)”最低求助积分说明 770835